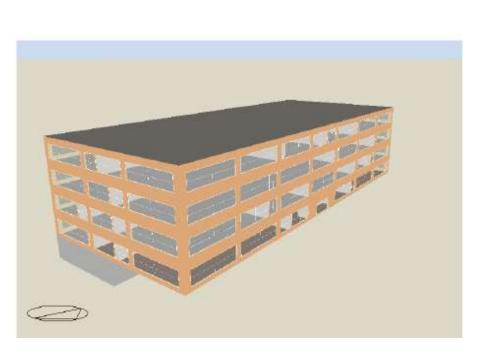
System COP

The Future of Energy Efficiency Modeling

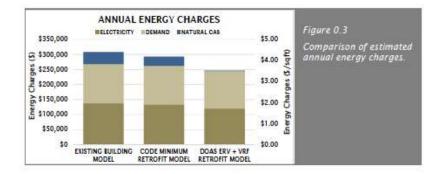
Barry Stephens BE25 - 20 MARCH 2025



TARRYTOWN OFFICE BUILDING

CONVENTIONAL MODELING

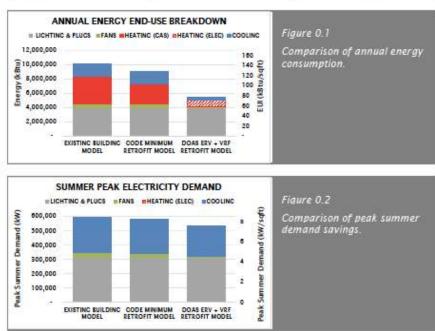
- Inputs using AHRI data
- Heat Pumps & VHE ERVs
- Simple Inputs, Simple Results
- Existing Testing & Ratings
 Procedures

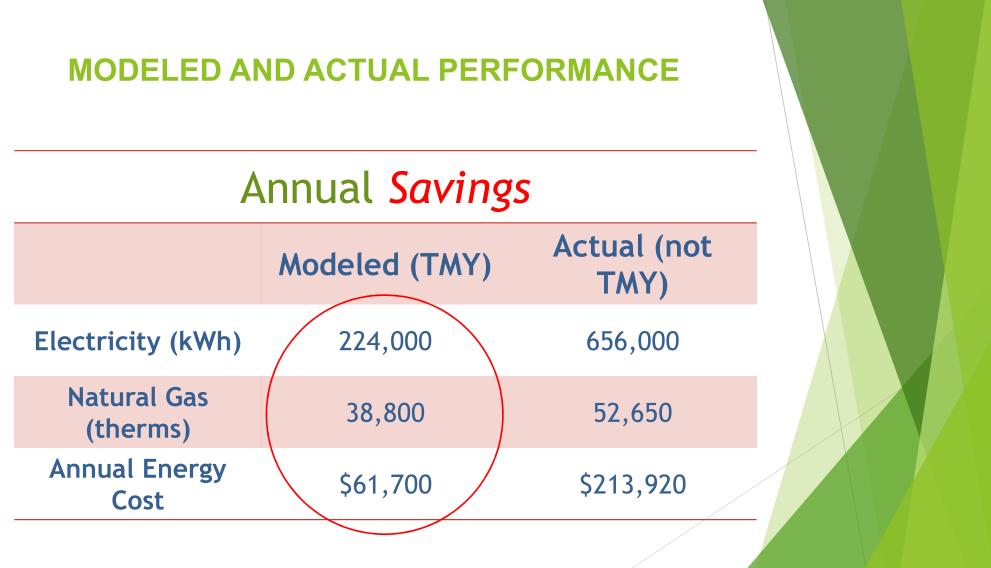

Energy Analysis Report | Project 20044.000 Tarrytown Office Building, 150 White Plains Rd, Tarrytown, NY

CONVENTIONAL MODELING

- Modest Savings
- Simple Payback Not Exciting!
- Incremental Cost Payback Was Worth Proceeding With Project
- Existing Testing & Ratings
 Procedures

Energy costs, cost savings, and simple payback are calculated based on current energy utility rates (Con Edison April 2018) and estimated incentive rates (Con Edison Commercial and Industrial Energy Efficiency Program Manual 2018, v2.2 March 1st, 2018). Key results are summarized below.


	Code Minimum Retrofit Model	DOAS ERV + VR Retrofit Model
Simple Payback Over Existing (Including	J Incentive)	
Total Capital Cost	\$1,700,000	\$2,000,000
Total Capital Cost with Incentive	\$1,657,720	\$1,817,760
Total Annual Savings	\$15,300	\$61,700
Simple Payback	108	29
Simple Payback Over Code Minimum (In	cluding Incentive)	5 1
Incremental Capital Cost	121	\$300,000
Incremental Capital Cost with Incentive	(44)	\$160,040
Total Annual Savings	30	\$46,400
Simple Payback	120	3



CONVENTIONAL MODELING

- Modest Savings
- Simple Payback Not Exciting!
- Incremental Cost Payback Was Worth Proceeding With Project
- Existing Testing & Ratings
 Procedures

	CODE MINIMUM MODEL	DOAS ERV + VRF MODEL
Savings Over Existing	20 30	65 10
Electricity	43,000 kWh	224,000 kWh
Natural Cas	9.800 Therms	38,800 Therms
Savings Over Code Mir	iimum	
Electricity		181,000 kWh
Natural Gas	1-2	29,000 Therms

SIGNIFICANT SAVINGS EXCEED THE MODEL

- 71,000 Sq ft
- 4 stories + partial basement
- Existing HVAC system based on dual-deck RTUs
- Lots of simultaneous heating & cooling
- Conversion completed (while occupied) in late 2019
- 2018 peak demand 519 kW (June)
- 2020 peak demand 366 kW (November)
- 2020 highest summer peak demand 208 kW (July)

Why did the model Underestimate the savings so significantly?

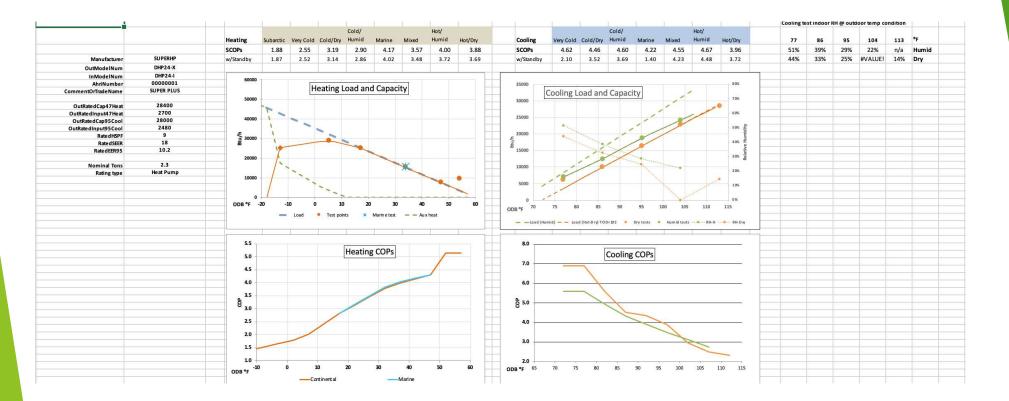
THE SOLUTION

CSA SPE-07:23

CSA SPE-18:24

s standard has beei listribute via email -

funded through sponsored access


Load-based and climate-specific testing and rating procedures for heat pumps and air conditioners

HEAT PUMPS

HEAT PUMPS

Tj (°F) S	Subarctic	Very Cold	Cold/Dry	Cold/Humid	Marine	Mixed	Hot/Humid	Hot/Dry	
Table B.11									
Heating Sea	acon Tome	erature Die							
-				Cold/Humid	Marino	Mixed	Hot/Humid	Hot /Dry	
-23	0.043	0.004	Cold/Dry	cola/Humia	warme	wiixea	Hot/Humia	носургу	Heating Bin Fractions
-23	0.043	0.004	0.001	0.002					
	0.024	0.008	0.001					i	0.300
-13									∧
-8 -3	0.036	0.015	0.004			0.001			0.250
	0.038	0.019	0.005					0.001	_ / \
2	0.050	0.028	0.010			0.003		0.001	0.200
									0.200
12	0.051	0.045	0.025			0.015		0.004	
17	0.062	0.061	0.047					0.011	0.150
22	0.057	0.067	0.064					0.022	'.
27	0.089	0.102	0.120						0.100
32	0.123	0.136	0.162					0.093	0.100
37	0.114	0.145	0.171					0.145	
42	0.076	0.108	0.125						0.050
47	0.082	0.108	0.123					0.218	
52	0.055	0.077	0.079					0.175	0.000
57	0.022	0.034	0.047	0.041	0.079	0.065	0.105	0.114	-23 -18 -13 -8 -3 2 7 12 17 22 27 32 37 42 47 5
									Sub arct ic Very Cold Cold/Humid Cold/Dry
N	7758	6340	5017					2162	Marine — Mixed — Hot/Humid — Hot/Dry
Odb	-25	-13	5					25	
FLH	3267	2526	2267	2175				1219	
HHE	5050	3353	2267	2373	1275	1279	369	665	Cooling Bin Fractions
									0.350
Table B.10									
Cooling Sea									0.350
Cooling Sea Tj S	Subarctic	Very Cold	Cold/Dry	Cold/Humid		Mixed	Hot/Humid		
Cooling Sea Tj S 72	Subarctic -	Very Cold 0.336	Cold/Dry 0.289	0.316	0.335	0.284	0.190	0.213	
Cooling Sea Tj S 72 77	Subarctic - -	Very Cold 0.336 0.192	Cold/Dry 0.289 0.154	0.316 0.210	0.335 0.137	0.284 0.232	0.190 0.305	0.213 0.143	0.300
Cooling Sea Tj S 72 77 82	Subarctic - - -	Very Cold 0.336 0.192 0.202	Cold/Dry 0.289 0.154 0.157	0.316 0.210 0.209	0.335 0.137 0.137	0.284 0.232 0.199	0.190 0.305 0.255	0.213 0.143 0.154	0.300
Cooling Sea Tj S 72 77 82 87	Subarctic - - -	Very Cold 0.336 0.192 0.202 0.162	Cold/Dry 0.289 0.154 0.157 0.138	0.316 0.210 0.209 0.147	0.335 0.137 0.137 0.104	0.284 0.232 0.199 0.150	0.190 0.305 0.255 0.146	0.213 0.143 0.154 0.131	0.300 0.250
Cooling Sea Tj S 72 77 82 87 87 92	Subarctic - - - -	Very Cold 0.336 0.192 0.202 0.162 0.089	Cold/Dry 0.289 0.154 0.157 0.138 0.172	0.316 0.210 0.209 0.147 0.095	0.335 0.137 0.137 0.104 0.154	0.284 0.232 0.199 0.150 0.100	0.190 0.305 0.255 0.146 0.081	0.213 0.143 0.154 0.131 0.163	0 300 0 250 0 200
Cooling Sea Tj S 72 77 82 87 92 97	Subarctic - - - - -	Very Cold 0.336 0.192 0.202 0.162 0.089 0.016	Cold/Dry 0.289 0.154 0.157 0.138 0.172 0.076	0.316 0.210 0.209 0.147 0.095 0.019	0.335 0.137 0.137 0.104 0.154 0.094	0.284 0.232 0.199 0.150 0.100 0.29	0.190 0.305 0.255 0.146 0.081 0.019	0.213 0.143 0.154 0.131 0.163 0.109	0.300 0.250
Cooling Sea Tj S 72 72 77 82 87 92 97 102	Subarctic - - - - - - -	Very Cold 0.336 0.192 0.202 0.162 0.089 0.016 0.002	Cold/Dry 0.289 0.154 0.157 0.138 0.172 0.076 0.013	0.316 0.210 0.209 0.147 0.095 0.019 0.005	0.335 0.137 0.137 0.104 0.154 0.094 0.028	0.284 0.232 0.199 0.150 0.100 0.029 0.006	0.190 0.305 0.255 0.146 0.081 0.019 0.003	0.213 0.143 0.154 0.131 0.163 0.109 0.058	0.300 0.250 0.200 0.150
Cooling Sea Tj S 72 72 77 82 87 92 97 102 107 107	Subarctic - - - - - - - - - -	Very Cold 0.336 0.192 0.202 0.162 0.089 0.016	Cold/Dry 0.289 0.154 0.157 0.138 0.172 0.076	0.316 0.210 0.209 0.147 0.095 0.019 0.005	0.335 0.137 0.137 0.104 0.154 0.094 0.028 0.007	0.284 0.232 0.199 0.150 0.100 0.29	0.190 0.305 0.255 0.146 0.081 0.019	0.213 0.143 0.154 0.131 0.163 0.109 0.058 0.025	0 300 0 250 0 200
Cooling Sea Tj S 72 72 77 82 87 92 97 102	Subarctic - - - - - - -	Very Cold 0.336 0.192 0.202 0.162 0.089 0.016 0.002	Cold/Dry 0.289 0.154 0.157 0.138 0.172 0.076 0.013	0.316 0.210 0.209 0.147 0.095 0.019 0.005	0.335 0.137 0.137 0.104 0.154 0.094 0.028	0.284 0.232 0.199 0.150 0.100 0.029 0.006	0.190 0.305 0.255 0.146 0.081 0.019 0.003	0.213 0.143 0.154 0.131 0.163 0.109 0.058	0.300 0.250 0.200 0.150
Cooling Sea Tj S 72 77 82 87 92 97 102 107 112 107	Subarctic - - - - - - - - - - - - - - - -	Very Cold 0.336 0.192 0.202 0.162 0.089 0.016 0.002 - -	Cold/Dry 0.289 0.154 0.157 0.138 0.172 0.076 0.013 0.002 -	0.316 0.210 0.209 0.147 0.095 0.019 0.005 -	0.335 0.137 0.137 0.104 0.154 0.094 0.028 0.007 0.002	0.284 0.232 0.199 0.150 0.100 0.029 0.006 0.001	0.190 0.305 0.255 0.146 0.081 0.019 0.003 -	0.213 0.143 0.154 0.131 0.163 0.109 0.058 0.025 0.004	0.300 0.250 0.200 0.150
Cooling Sea Tj S 72 77 82 87 92 97 102 102 107 112 Nc Nc	Subarctic - - - - - - - - - -	Very Cold 0.336 0.192 0.202 0.162 0.089 0.016 0.002 -	Cold/Dry 0.289 0.154 0.157 0.138 0.172 0.076 0.013 0.002	0.316 0.210 0.209 0.147 0.095 0.019 0.005 -	0.335 0.137 0.137 0.104 0.154 0.094 0.028 0.007 0.002	0.284 0.232 0.199 0.150 0.100 0.029 0.006 0.001	0.190 0.305 0.255 0.146 0.081 0.019 0.003	0.213 0.143 0.154 0.131 0.163 0.109 0.058 0.025	0.300 0.250 0.200 0.150 0.100
Cooling Sea Tj S 72 72 77 82 87 92 97 102 107 107	Subarctic - - - - - - - - - - - - - - - -	Very Cold 0.336 0.192 0.202 0.162 0.089 0.016 0.002 - -	Cold/Dry 0.289 0.154 0.157 0.138 0.172 0.076 0.013 0.002 -	0.316 0.210 0.209 0.147 0.095 0.019 0.005 -	0.335 0.137 0.137 0.104 0.154 0.094 0.028 0.007 0.002	0.284 0.232 0.199 0.150 0.100 0.029 0.006 0.001	0.190 0.305 0.255 0.146 0.081 0.019 0.003 -	0.213 0.143 0.154 0.131 0.163 0.109 0.058 0.025 0.004	0.300 0.250 0.200 0.150 0.100

More documents in 🛞 CSA Energy Efficiency Standards Access ~

CSA SPE-18:2024 - Load-based and climate-specific testing and rating procedures for seasonal performance of heat recovery and energy recovery ventilators (HRVs and ERVs)

Version 2

Created by Thuy Ton on Nov 20, 2024 11:12 AM. Last modified by Thuy Ton on Nov 20, 2024 11:13 AM.

Access to this standard has been funded through CSA supporters who value energy conservation. CSA thanks the valuable contributions of our members and sponsors. Please do not distribute via email - sponsored access to this and other standards is available through the CSA Energy Efficiency Community – http://community.csagroup.org

Published in English Only

Access to this standard has been funded through CSA supporters who value energy conservation.

CSA thanks the valuable contributions of our members and sponsors.

Please do not distribute via email - sponsored access to this and other standards is available through the CSA Energy Efficiency Community – http://community.csagroup.org

AHRI 1060/CSA 439 vs CSA SPE18

<u>AHRI</u>

- Allows for mass flow imbalance
- Primarily testing core/wheels
- Limited to 70% & 100% flows
- Two data points for temperature

<u>CSA439</u>

- Allows for mass flow imbalance
- Two or Three data points for temperature
- Very high failure rate for challenge testing

March 2025© Ventacity Systems, Inc.

CSA SPE18

- Six (6) data points for temperature
- Accounts for climate zones
- Accounts for frost control in cold climates
- Accounts for economizing in cooling mode
- Mass Flow Balance flows within 5%
- Indoor <u>and</u> Outdoor testing

AHRI HAS "ALLOWANCES"

MEASUREMENTS	1	SUMMER			WINTER						
	Outdoor (OA)	F	loom (RA)	Outdoor (OA)		Room (RA)					
Flow Rate scfm	1400	1110		1400	1110						
xy Bulb °F	82	75		23	70	70					
Wet Bulb °F	63	62.6	3	22	54.4						
Inthalpy (H) BTU/Ib	28.4	28.1		7.8	22.7						
Moisture Ratio (MR) grains/lb	55.5	64.7	1	15.0	38.0						
		% -			×>						
	Exhaust (EA)		resh (FA)	Exhaust (EA)	K/X	Fresh (FA)					
low Rate scfm	-	1400		•	1400						
Dry Bulb *F	2	77.3			54.6						
Wet Bulb °F		62.4	1	n- ;	44.8						
Enthalpy (H) BTU/Ib	* (27.9	8	•	17.5						
Moisture Ratio (MR) grains/lb	*	60.0	3		28.1						
	1	SUMMER	30		WINTER						
resh Air - External Static Pressure w.g.		1.4			1.4						
Exhaust Air - External Static Pressure w.g.	48 M2	1.4		3-05 4-75	1.4						
ensible effectiveness %		84.9		22	84.9						
lotal effectiveness %		74			81.7						
Load savings ratio %		58.7			64.8						
Moisture removed grains/lb		-4.5		1	-13.1	2205					
	Sen	Lat	Tot	Sen	Lat	Tot					
Driginal load BTUH [T]	10584 [0.9]	8850 [0.7]	19434 [1.6]	71064	22921	93985					
Load w/ RenewAire BTUH [T]	3461 [0.3] 45	66 [0.4]	8027 [0.7]	23239	9862	33102					
Total energy saved BTUH [T]	7123 [0.6] 42	284 [0.4]	11407 [1]	47825	13059	60883					

TRUTH IN ADVERTISING?

- 1. OA = 23F
- 2. RA = 70F
- 3. FA = 54.6 F

AHRI = 70-23 (47) 54.6-23 (31.6)

= 31.6/47 { 67%

CLAIM SENSIBLE 84.9% ?

WHAT IS VERY HIGH EFFICIENCY?

Project Information

 Project Name:
 Example Project Name

 City:
 Portland

 State/Province:
 SFO

 Org Name:
 Customer Co, Inc.

 Org Contact Name:
 30hn Doe

 Org Contact Phone:
 800-555-1212

 Org Contact Email:
 john@buildingowner.com

 Created Dy:
 BST

 Created Dy:
 642019

Quick Selector Ventacity HRV / ERV Ventacity Model VS3000 1.5 KBTU/h Altitude 1400 CFM 0.5 -8.28 -2.3 kBTU/h Exhaust Flow 1110 CFM 0.5 -55.03 -55.8 kBTU/h

Project Conditions Summer Conditions HRV OA Unconditioned OA ERV OA Cooling Cooling Load Cooling Load Cooling Load Outside DBT 82.0 °F Supply DBT 82.0 °F Supply DBT 76.5 °F 76.9 °F Supply DBT Outside WBT 63.0 °F Supply WBT 63.0 °F Supply WBT 61.1 °F 62.5 °F Supply WBT or Outside RH % 34.2 Supply RH 34.2 % Supply RH 40.9 % Supply RH 44.4 % Design Inside DBT 75.0 °F Efficiency (S) 78.2 % 72.2 % Efficiency (S) Design Inside WBT Efficiency (L) 78.5 % or Design Inside RH 50.0 % 50.0 Sensible Load 10.58 kBTU/h Sensible Load 2.31 kBTU/h Sensible Load 2.9 kBTU/h Latent Load -8.67 kBTU/h Latent Load -8.66 kBTU/h Latent Load -3.3 kBTU/h Winter Conditions Unconditioned OA HRV OA ERV OA Heating Heating Load Heating Load Heating Load 23 °F Supply DBT 59.4 °F Outside DBT Supply DBT 23.0 °F Supply DBT 59.9 °F Outside WBT 22 °F Supply WBT 22.0 Supply WBT 44.9 °F Supply WBT 48.8 °F 43.7 % or Outside RH % 86.4 Supply RH 86.4 % Supply RH 28.3 % Supply RH Design Inside DBT 70 °F Efficiency (S) 73.3 % Efficiency (S) 72.0 % Design Inside WBT Efficiency (L) 82.4 % or Design Inside RH 35 % 35.0 eheater: 7.2F / 36.8F reheater: 10.8F / 36.8F

March 2025© Ventacity Systems, Inc.

TRUTH IN ADVERTISING?

- WINTER 1. OA = 23F
- 2. RA = 70F
- 3. FA = 59.9 F

AHRI = 70-23 (47) 59.9-23 (36.9)

= 36.9/47 - **79%**

BALANCED FLOWS ARE IMPORTANT

Project Information

Project Name:	Example Project Name
City:	Portland
State/Province:	SFO
Org Name:	Customer Co, Inc.
Org Contact Name:	John Doe
Org Contact Phone:	800-555-1212
Org Contact Email:	john@buildingowner.com
Created By:	BST
Created On:	6/4/2019

Project Conditions

Summer Conditions Cooling	Unconditi Coolin	oned OA g Load	HRV Cooling		ERV OA Cooling Load				
Outside DBT 82.0 °F	Supply DBT	82.0 °F	Supply DBT	75.7 °F	Supply DBT	76.3 °F			
Outside WBT 63.0 °F	Supply WBT	63.0 °F	Supply WBT	60.8 °F	Supply WBT	62.3 °F			
or Outside RH % 34.2	Supply RH	34.2 %	Supply RH	42.1 %	Supply RH	45.8 %			
Design Inside DBT 75.0 °F			Efficiency (S)	89.8 %	Efficiency (S)	81.8 %			
Design Inside WBT °F					Efficiency (L)	68.0 %			
or Design Inside RH 50.0 % 50.0									
	Total Load	1.92 kBTU/h	Total Load	-7.60 kBTU/h	Total Load	-0.9 kBTU/h			
	Sensible Load	10.58 kBTU/h	Sensible Load	1.08 kBTU/h	Sensible Load	1.9 kBTU/h			
	Latent Load	-8.66 kBTU/h	Latent Load	-8.67 kBTU/h	Latent Load	-2.8 kBTU/h			

1.0

60

Total OA Load (Uncond. / HRV / ERV)

kBTU/h

kBTU/ł

Quick Selector

Ventacity HRV / ERV

Ventacity Model VS3000 Altitude 100 ft Supply Flow 1400 CFM Exhaust Flow 1400 CFM

Winter Conditions Heating			ioned OA g Load	HRV Heating			ERV OA Heating Load				
Outside DBT 23 °F		Supply DBT	23.0 °F	Supply DBT	63.6 °F		Supply DBT	62.3 °F			
Outside WBT 22 °F		Supply WBT	22.0	Supply WBT	46.0 °F		Supply WBT	49.8 °F			
or Outside RH % 86.4		Supply RH	86.4 %	Supply RH	21.0 %		Supply RH	39.9 %			
Design Inside DBT 70 °F				Efficiency (S)	85.3 %		Efficiency (S)	81.6 %			
Design Inside WBT							Efficiency (L)	74.1 %			
or Design Inside RH 35 % 35.0											
		Total Load			9.64 kBTU/h			11.6 kBTU/h			
		(Sensible)									
				Preheater: 3.6F / 36.8F Warning: Condensatior		1	Preheater: 5.4F / 36.8F				

March 2025© Ventacity Systems, Inc.

TRUTH IN ADVERTISING?

- WINTER
- 1. OA = 23F 2. RA = 70F
- 3. FA = 62.3 F
- AHRI = 70-23 (47) 62.3-23 (39.3)

= 39.3/47 - **84%**

CSA SPE18

Table 4 Test conditions (See Clauses 10.1.2, 10.3.2, 10.4.4, 10.4.5, and 10.6.1.)

	Out	door	Indoor					
Test	Dry-bulb, °C (°F)	Wet-bulb, °C (°F)	Dry-bulb, °C (°F)	Wet-bulb °C (°F)				
A	35 (95)	26.1 (78.9)	24 (75 2)	17 (62 6)				
В	30 (86)	21.9 (71.4)	- 24 (75.2)	17 (62.6)				
C	10 (50)	4.5 (40.1)						
D	0 (32)	-3.4 (25.9)	21 (60.8)	11 4 (52 5)				
E *	-10 (14)	- <mark>12 (10.4</mark>)	- 21 (69.8)	11.4 (52.5)				
F [†]	-25 (-13)	-25.7 (-14.3)						

* Optional test, if needed to estimate parameters for frost control.

† For long-term cold weather test only.

CSA SPE18

B.2 Climates

The eight climate zones used in this Document are shown in Figure <u>B.1</u>. The prototype cities that correspond with each climate zone are shown in Table <u>B.1</u>, along with approximate correspondence or overlap with IECC climate zones is shown.

Table B.1
Climate zone mapping
(See Clauses <u>B.1</u> and <u>B.2</u> .)

Climate zone	Prototype City	IECC climate zone equivalents (approximate)
Subarctic	Ambler, AK	8
Very cold	Presque Isle, ME	6A, 7
Cold/Dry	Rifle, CO	5B, 6B
Cold/Humid	Lansing, MI	4A (north), 5A
Marine	Kelso, WA	3C, 4C, 5C
Mixed/Humid	Wichita, KS	3A, 4A (south)
Hot/Humid	Houston, TX	2A
Hot/Dry	Kingman, AZ	2B, 3B

CSA SPE18

Annex A (informative) Fixed-bed regenerator performance testing

Notes:

- 1) This informative annex has been written in mandatory language to facilitate adoption where users of the Document or regulatory authorities wish to adopt it formally as additional requirements to this Document.
- 2) See Clause <u>3</u>.

A.1 General

It is important to consider the alternating discharge and regeneration cycle when testing fixed-bed regenerators (FBRs). Unlike conventional HRV/ERVs, an FBR operating at steady state produces airstreams with periodically fluctuating air properties. Except as specified in this Annex, the same measurement techniques, test conditions, and calculations described in this Document shall be used to determine the performance of FBR units.

A.2 Instrumentation and measurement procedures

A.2.1 General

The instruments used to determine performance shall meet the requirements in Clauses 4.2, 5, and 6.

A.2.2 Sampling rate and response time

A.2.2.1 Air sampling

Air properties at the four measuring stations shall be sampled at least 30 times per recovery period, and shall span the entire recovery period using instruments with a response time shorter than the sampling rate.

8 C 0 E F G H 1 J K L M N	0 P Q R S T V	v	w x	Υ.	Z AA		AC AD	Æ	AF-	AS AH	A	AL A	K AL	AM	AN J	0 AP	AQ	AR	AS AT	AU	N/	AW AX	AY	A2 84	88
Whole-system HVAC Seasonal COPs, by climate zone and heating/cooling system type Temperature Bin Weightings from CSA SPE07/23 (Load based Testing and Rating for heat Purps and Air Conditioners)												Whole-Syste		Load Season	al COPs - Heat	ing									
N/ER/ N/ER/ N/ER/ Ventlati	April Professionance Heating System Performance Heating System Performance an VS/CM VS/CMCOP Ver COP Gas Pack Elec. Rcs. Heat Parapo RTU COP RTU COP RTU COP RTU COP RTU COP			Elec. Res. Hea 8TU H	thump var tru	Gas Pack I RTU	old Elec. Res. Heat Pun RTU RTU	v var	Gas Pack Ek	x.Ros. Heat Pum RTU RTU	p VIA	Cold/Humid Gas Pack Elec. RTU RT	-	w	Marine Sas Pack Elec. RTU R	Res. Heat Pump TU RTU	væ	Mixed Sas Pack Ele RTU	c. Res. Heat Pur RTU RTU	P var	Hot/Humid Bas Pack Elec RTU S	t. Res. Heat Pum RTU RTU	ng Vite	Gas Pack Elec. R RTU RTU	s. Heat Pump RTU
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	II.360 137.0 132.2 13.0 5.70 6.80 5.70 II.360 15.0 5.70 6.80 5.70 6.80 5.70 II.360 6.33 12.0 5.70 6.80 5.70 II.360 6.33 12.0 7.70 6.80 6.70 II.360 6.33 12.1 7.70 6.80 6.70 II.360 6.33 12.1 7.70 6.80 6.70 II.361 6.33 12.1 7.70 6.80 6.70 II.361 6.33 12.1 7.70 6.80 6.70 II.361 6.34 12.1 7.70 6.80 6.70 II.361 6.34 12.1 7.70 6.80 6.70 II.363 6.34 12.4 7.70 6.80 6.70 II.363 6.34 12.4 7.70 6.80 6.70 II.363 6.70 6.70 6.80 6.70 6.80		22.1 22.0 21.0 21.0 20.0 19.9 130 19.8 130 19.8 130 19.8 139 19.6 139 19.6 14.6 15 19.6 15 19.6 15 19.6 15 19.6 15 19.6 15 19.6 15 19.6 15 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	21.0 : 19.9 : 18.9 :	2.1 22.1 10 210 55 200 57 140 57 170 57 120 53 139 53 139 53 139 54 149 54 149 55 55 56 78 55 68 53 58	23.0 29.9 38.8 27.8	22.1 22.1 21.0 21.0 135 25.9 114 36.7 115 31.5 115 31.5 115 31.5 115 31.5 115 31.5 30.3 66.3 6.2 8.6 6.3 6.6 6.1 6.5 6.3 5.0 6.3 5.0	21.0 20.0 18.0 17.0 14.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9	19.9 18.8 17.8 16.7 13.6 13.5 13.5 13.5 12.4 11.4 10.3 9.2 8.1 7.1	21.0 21.0 21.0 21.0 21.9 159 21.7 174 357 157 357 157 353 135 21.5 125 31.4 11.4 20.3 10.3 20.4 64 82 86 7.1 76 61 65 50 51	21.0 20.0 10.0 10.0 10.0 10.0 10.9 10.9 10.9 0.8 8.8 8.8 7.8 6.8 5.8	21.0 21 25.9 19 25.8 18 27.8 17 35.6 15 35.6 1	9 199 9 189 8 178 7 167 7 157 6 146 5 135 5 125 4 114 3 103 8 96 2 86 1 76	13.9 12.9 13.9 9.8 8.8 7.8 6.8	114 1 103 5 92 5 81 8 7.1 7	15 1155 15 123 14 114 13 96 2 86 2 1 65 1 65 9 53	18.D 17.0 12.9 12.9 12.9 12.9 13.9 9.8 8 7.8 6.8 7.8 6.5 8	36.7 33.6 34.6 33.5 32.4 11.4 30.3 9.2 8.1 7.1	17.8 17.8 16.7 16.7 15.7 15.7 15.7 15.7 15.3 15.5 15.4 16.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4	149 113 119 119 03 03 88 88 68 55	13.5 1 12.4 1 11.4 1 10.3 1 9.2 8.1 7.1	546 146 135 135 134 114 93 96 82 86 83 86 83 86 83 65 83 65	170 150 149 139 109 09 8 8 8 8 7 8 58	36.7 36.7 35.6 11.7 34.6 14.8 13.5 13.5 31.6 14.8 30.1 10.3 38.1 8.2 4.2 6.3 4.6 6.5	15.7 14.6 13.5 12.5 11.4 10.3 9.6 8.6 7.6
This (-) age is normal, which is shall be drawning with the major that and positive Load Intel ⁵ 97 11,453		Ventilation SCOP	12.7 12.2	12.3	24 111	30.5	10.5 10.7	30.2	9.6	9.6 9.9	10.7	30.1 10	1 10.3	8.2	7.5 7	6 8.0	9.5	8.8	8.9 9.2	85	7.8	79 82	8.6	7.9 7.9	8.3
		Heating System SCOP	2.92 0.75	0.98 :	.63 3.28	0.75	0.98 1.86	3.48	0.75	0.98 1.99	3.37	0.75 0.5	18 1.89	3.96	0.72 0	98 2.76	3.65	0.74	0.98 2.23	3.89	0.72 0	2.98 2.56	3.89	0.72 0.98	2.54
	Combined System SCOP	% Vent Load 20% 25% 30%	4.87 3.05 5.36 3.62 5.85 4.20 6.34 4.77	3.80	179 4.84 33 5.23 37 5.52 41 6.01	2.70 3.19 3.67 4.16	2.89 3.64 3.37 4.08 3.85 4.53 4.33 4.97	4.82 5.16 5.50	2.52 2.96 3.40	2.71 3.57 3.15 3.96 3.58 4.36 4.01 4.75	4.83 5.20 5.56 5.93	2.61 2.8 3.08 3.3 3.55 3.3 4.01 4.3	7 4.00	4.82 5.03 5.24	2.08 2 2.42 2 2.75 2 3.09 3	63 4.06	4.82 5.11 5.40	2.76	2.56 3.61 2.95 3.96 3.35 4.30 3.74 4.65	4.82 5.06 5.29 5.52	2.34 1 2.50 2 2.85 3 3.21 9	2.36 3.70 2.71 3.98 8.05 4.27	4.83 5.07 5.30	2.16 2.37 2.51 2.72 2.87 3.00 3.23 3.42	3.69 3.98 4.26
											Who	le-System Ven	tilation Load S	e asonal COPs	- Cooling										
0012NG V/V V/V V/V V/V V/V V/V V/V V/V V/V V/	Stackly W / ERV Performance Cooling System Performance on 10 86 Recovered Recove		VMF Gas Pack RTU	Elec. Res. Hea STU I	tPump ver	Gas Pack I RTU	old Elec. Res. Heat Pun RTU RTU	o _{var}	Gas Pack Ek	K. Res. Heat Pum RTU RTU	P VRF	Cold/Humid Gas Pack Elec. RTU RT	Res. Heat Pung U RTU	VAF -	Marine 5 as Pack Elec. RTU R	Res. Heat Pump TU RTU	VIE	Mixed Eas Pack Ele RTU	c. Res. Heat Par RTU RTU	P VRF	Hot/Humic Sas Pack Elec RTU S	d L.Res. HeatPan RTU RTU	9 VIF	Hot/Day Gas Pack Elec. B RTU RTU	s. HeatPamp RTU
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 0.54 44 0.2 67 3.3 3.3 3.3 1 0.566 67.7 2.4 6.1 7.7 7.2 2 0.7 2.4 6.4 1.7 7.7 7.2 2 0.7 0.34 6.7 4.2 1.2 1.2 1.2 2 0.7 0.34 6.7 4.2 1.2 1.2 1.2 3 0.43 6.7 4.3 1.2 1.2 1.2 1.2 4 0.4 <td></td> <td>Ne</td> <td>Cooling</td> <td>30 18 33 48 62 7,7 92</td> <td>9.0</td> <td>2.1 2.1 10 10 2.7 2.7 4.8 4.3 3.8 3.8 7.4 7.4 9.0 9.0</td> <td>30 18 33 48 62 7,7 92 30,7</td> <td>10 2.7 4.3 5.8 7.4 9.0 10.6</td> <td>2.1 2.1 10 10 2.7 2.7 4.3 4.3 5.8 5.8 7.4 7.4 9.0 9.0 20.6 20.6</td> <td>30 18 33 62 7.7 92</td> <td>21 2 10 1 27 2 43 4 58 5 74 5 90 9</td> <td>0 10 7 27 8 43 8 58 4 74 0 90</td> <td>3.0 1.8 3.3 4.8 6.2 7.7 9.2 30.7 12.3</td> <td>2.7 2 4.3 4 5.8 5 7.4 7 9.0 5 10.6 5 12.2 1</td> <td>0 10 7 27 3 43 8 58 4 74 0 90 16 106 12 122</td> <td>3.0 18 3.3 48 6.2 7.7 9.2 20.7</td> <td>2.7 4.3 5.8 7.4 9.0 30.6</td> <td>2.1 2.1 10 10 2.7 2.7 4.3 4.3 1.8 5.8 7.4 7.4 9.0 9.0 10.6 10.6</td> <td>20 18 13 48 62 77 92</td> <td>10 2.7 4.3 5.8 7.4 9.0</td> <td>2.1 2.1 10 10 2.7 2.7 4.3 4.3 5.8 5.8 5.8 5.8 7.4 7.4 9.0 9.0</td> <td>4.8 6.2</td> <td>2.1 2.1 10 10 2.7 2.7 7.4 3 43 5.8 5.8 7.4 7.4 50 50 20.6 10.6 12.2 12.3</td> <td>10 2.7 4.3 5.8 7.4 9.0</td>		Ne	Cooling	30 18 33 48 62 7,7 92	9.0	2.1 2.1 10 10 2.7 2.7 4.8 4.3 3.8 3.8 7.4 7.4 9.0 9.0	30 18 33 48 62 7,7 92 30,7	10 2.7 4.3 5.8 7.4 9.0 10.6	2.1 2.1 10 10 2.7 2.7 4.3 4.3 5.8 5.8 7.4 7.4 9.0 9.0 20.6 20.6	30 18 33 62 7.7 92	21 2 10 1 27 2 43 4 58 5 74 5 90 9	0 10 7 27 8 43 8 58 4 74 0 90	3.0 1.8 3.3 4.8 6.2 7.7 9.2 30.7 12.3	2.7 2 4.3 4 5.8 5 7.4 7 9.0 5 10.6 5 12.2 1	0 10 7 27 3 43 8 58 4 74 0 90 16 106 12 122	3.0 18 3.3 48 6.2 7.7 9.2 20.7	2.7 4.3 5.8 7.4 9.0 30.6	2.1 2.1 10 10 2.7 2.7 4.3 4.3 1.8 5.8 7.4 7.4 9.0 9.0 10.6 10.6	20 18 13 48 62 77 92	10 2.7 4.3 5.8 7.4 9.0	2.1 2.1 10 10 2.7 2.7 4.3 4.3 5.8 5.8 5.8 5.8 7.4 7.4 9.0 9.0	4.8 6.2	2.1 2.1 10 10 2.7 2.7 7.4 3 43 5.8 5.8 7.4 7.4 50 50 20.6 10.6 12.2 12.3	10 2.7 4.3 5.8 7.4 9.0
Load inc/55 18,060		Ventilation SCOP			3.5		2.8 2.8	4.1	35			2.8 2				6 3.6	200	2.9	2.9 2.9	2.3	2.4	2.4 2.4		3.8 3.8	
		Cooling System SCOP			6.03	3.26	1.26 1.26	\$.75	3.23	1.23 1.23	6.03	3.27 3.3	17 1.27	5.69	2.17 A	17 3.17	6.00	3.28	3.28 3.28	6.06	2.34 3	2.34 2.34	5.48	3.20 3.20	3.20
	Combined System SCOP	20% 25% 30%			5.51 5.39 5.26	3.15	1.17 1.17 1.15 1.15 3.12 3.12	5.42 5.34 5.26	3.30	1.28 1.28 1.30 1.30 3.31 3.31	5.52 5.39 5.27	3.18 3.1 3.16 3.1 3.14 3.1	15 3.16	5.40 5.32 5.25	1.28 1	26 1.26 28 1.28 30 3.30	5.51 5.38 5.26	3.18	3.20 3.20 3.18 3.18 3.26 3.16	5.51 5.37 5.23	1.14 1 1.09 1 1.05 1	1.14 1.14 1.09 1.09 1.05 3.05	5.22 5.36 5.30	1.31 1.33 1.34 1.34 1.37 3.37	2.34

March 2025© Ventacity Systems, Inc.

*

* Modeling Tool Compliments of Charlie Stephens

Whole-system HVAC Seasonal COPs, by climate zone and heating/cooling system type Temperature Bin Weightings from CSA SPE07-23 (Load-based Testing and Rating for Heat Pumps and Air Conditioners) **H/ERV** Sens **H/ERV** Sens H/ERV HEATING Eff in 77.5% Eff in 76.2% 0.75 Design cfm: 2,515 W/cfm: Heating: Cooling: **Climate Zone** Subarctic Very cold Cold/Dry Cold/Humid Marine Mixed Hot/Humid Hot/Dry Т орн °F 33 -40 -10 30 16 26 4 -1 Ν 7758 6340 5017 4808 4630 3299 1199 2162 Indoor DB (ref) 70 Fractional bin hours, n //N Tj °F Range -23 <-20.5 0.043 0.004 -_ -_ _ -18 -20.5 to -15.5 0.024 0.006 0.001 0.002 _ _ _ _ -13 -15.5 to -10.5 0.028 0.009 0.002 0.003 _ _ _ _ -8 –10.5 to –5.5 0.036 0.015 0.004 0.007 _ _ _ _ -3 -5.5 to 0.5 0.038 0.019 0.005 0.01 _ 0.001 _ _ 2 0.5-4.5 0.05 0.028 0.01 0.02 0.003 0.001 _ _ 7 4.5-9.5 0.05 0.035 0.014 0.029 0.007 0.002 _ _ 0.004 12 9.5-14.5 0.051 0.045 0.025 0.041 0.015 0.001 _ 17 14.5-19.5 0.062 0.061 0.047 0.062 0.002 0.033 0.005 0.011 22 19.5-24.5 0.057 0.067 0.064 0.071 0.005 0.046 0.015 0.022 27 24.5-29.5 0.089 0.102 0.12 0.116 0.019 0.094 0.049 0.054 32 29.5-34.5 0.123 0.136 0.162 0.061 0.137 0.098 0.093 0.15 37 34.5-39.5 0.114 0.145 0.171 0.151 0.147 0.171 0.165 0.145 39.5-44.5 42 0.076 0.108 0.125 0.104 0.199 0.147 0.173 0.161 47 44.5-49.5 0.082 0.108 0.123 0.114 0.282 0.161 0.217 0.218 52 49.5-54.5 0.055 0.077 0.079 0.078 0.205 0.118 0.171 0.175 57 0.022 0.079 0.105 0.114 >54.5 0.034 0.047 0.041 0.065

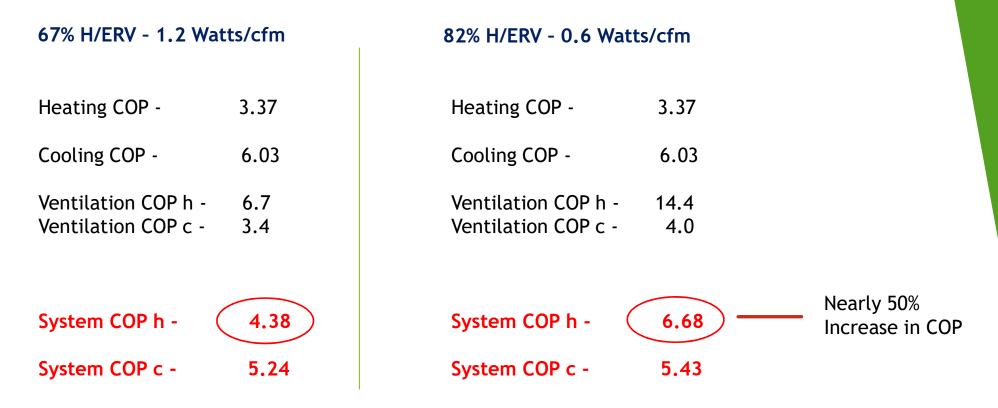
March 2025© Ventacity Systems, Inc.

* Modeling Tool Compliments of Charlie Stephens

	_		Ventacit	y H/ERV Perf	ormance			leating Syste	m Performan	ice
		VS/CM Watts	Ventilation Load (No Recovery)	VS/CM Recovered	VS/CM Load Remaining	VS/CM COP	VRF COP	Gas Pack RTU COP	Elec. Res. RTU COP	Heat Pump RTU COP
	_									
	-									
	-									
-18	-20.5 to									
	-15.5	1,886	234,273	181,568	52,705	28.2	1.0	0.78	0.98	0.98
-13	-15.5 to -10.5	1,886	222,820	172,691	50,129	26.8	1.0	0.78	0.98	0.98
-8	–10.5 to –5.5	1,886	211,366	163,814	47,552	25.5	1.2	0.78	0.98	0.98
-3	-5.5 to 0.5	1,886	199,913	154,938	44,975	24.1	1.5	0.78	0.98	0.98
2	0.5- 4.5	1,886	188,460	146,061	42,399	22.7	1.7	0.78	0.98	0.98
7	4.5-9.5	1,886	177,006	137,185	39,822	21.3	1.9	0.78	0.98	0.98
12	9.5-14.5	1,886	165,553	128,308	37,245	19.9	2.2	0.78	0.98	0.98
17	14.5-19.5	1,886	154,100	119,431	34,668	18.6	2.4	0.78	0.98	0.98
22	19.5-24.5	1,886	142,646	110,555	32,092	17.2	2.6	0.78	0.98	0.98
27	24.5-29.5	1,886	131,193	101,678	29,515	15.8	2.8	0.78	0.98	0.98
32	29.5-34.5	1,886	119,740	92,801	26,938	14.4	3.1	0.78	0.98	0.98
37	34.5-39.5	1,886	108,286	83,925	24,362	13.0	3.3	0.77	0.98	0.98
42	39.5-44.5	1,886	96,833	75,048	21,785	11.7	3.5	0.75	0.98	2.50
47	44.5-49.5	1,886	85,380	66,171	19,208	10.3	3.8	0.73	0.98	2.90
52	49.5-54.5	1,886 1,886	73,926 62,473	57,295 48,418	16,631 14,055	8.9 7.5	4.0 4.4	0.71 0.69	0.98 0.98	3.30 2.90
52	> 54.5	1,886	51,020	48,418 39,542		7.5 6.1	4.4 4.8	0.69	0.98	2.90
5/	> 54.5	1,000	51,020	39,342	11,478	0.1	4.0	0.07	0.96	2.00

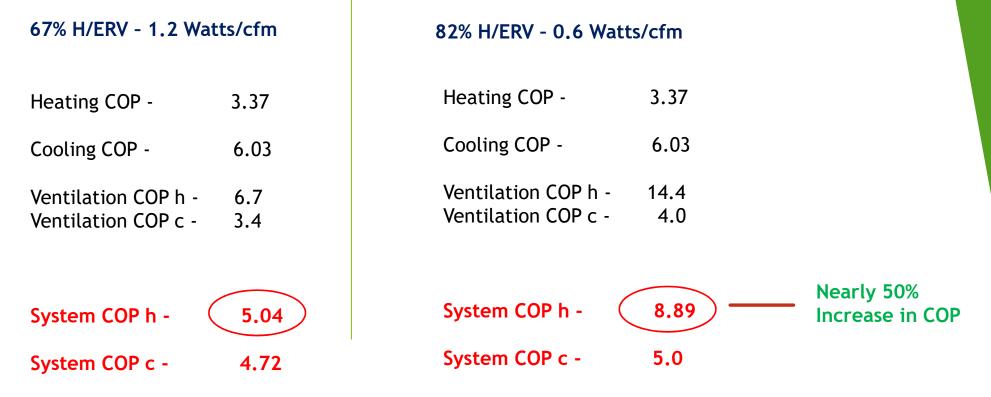
March 2025© Ventacity Systems, Inc.

* Modeling Tool Compliments of Charlie Stephens

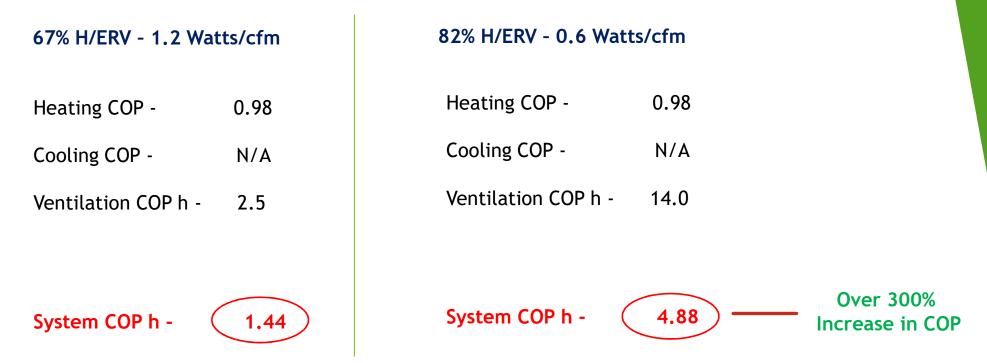

	Co	ld/Dry			Cold/I	Humid			Ma	rine			Mi	ixed	
VRF	Gas Pack RTU	Elec. Res. RTU	Heat Pump RTU	VRF	Gas Pack RTU	Elec. Res. RTU	Heat Pump RTU	VRF	Gas Pack RTU	Elec. Res. RTU	Heat Pump RTU	VRF	Gas Pack RTU	Elec. Res. RTU	Heat Pum RTU
21.0) 21.0	21.0	21.0	21.0	21.0	21.0	21.0			· · · · · · · · · · · · · · · · · · ·					
20.0) 19.9	19.9	19.9	20.0	19.9	19.9	19.9								
19.0) 18.8	18.9	18.9	19.0	18.8	18.9	18.9		1		+			+	
18.0		17.8	17.8	18.0	17.8	17.8	17.8		1	<u> </u>		18.0	17.8	17.8	17.8
17.0		16.7	16.7	17.0	16.7	16.7	16.7		1			17.0	16.7	16.7	16.7
15.9		15.7	15.7	15.9	15.6	15.7	15.7		1			15.9	15.6	15.7	15.7
14.9		14.6	14.6	14.9	14.6	14.6	14.6					14.9	14.6	14.6	14.6
13.9		13.5	13.5	13.9	13.5	13.5	13.5	13.9	13.5	13.5	13.5	13.9	13.5	13.5	13.5
12.9		12.5	12.5	12.9	12.4	12.5	12.5	12.9	12.4	12.5	12.5	12.9	12.4	12.5	12.5
11.9		11.4	11.4	11.9	11.4	11.4	11.4	11.9	11.4	11.4	11.4	11.9	11.4	11.4	11.4
10.9		10.3	10.3	10.9	10.3	10.3	10.3	10.9	10.3	10.3	10.3	10.9	10.3	10.3	10.3
9.8	9.2	9.3	9.6	9.8	9.2	9.3	9.6	9.8	9.2	9.3	9.6	9.8	9.2	9.3	9.6
8.8		8.2	8.6	8.8	8.1	8.2	8.6	8.8	8.1	8.2	8.6	8.8	8.1	8.2	8.6
7.8		7.1	7.6	7.8	7.1	7.1	7.6	7.8	7.1	7.1	7.6	7.8	7.1	7.1	7.6
6.8		6.1	6.5	6.8	6.0	6.1	6.5	6.8	6.0	6.1	6.5	6.8	6.0	6.1	6.5
5.8	4.9	5.0	5.3	5.8	4.9	5.0	5.3	5.8	4.9	5.0	5.3	5.8	4.9	5.0	5.3
10.2	9.6	9.6	9.9	10.7	10.1	10.1	10.3	8.2	7.5	7.6	8.0	9.5	8.8	8.9	9.2
3.48	3 0.75	0.98	1.99	3.37	0.75	0.98	1.89	3.96	0.72	0.98	2.76	3.65	0.74	0.98	2.23
1															
4.82		2.71	3.57	4.83	2.61	2.81	3.58	4.82	2.08	2.30	3.80	4.82	2.35	2.56	3.61
5.16		3.15	3.96	5.20	3.08	3.27	4.00	5.03	2.42	2.63	4.06	5.11	2.76	2.95	3.96
5.50		3.58	4.36	5.56	3.55	3.73	4.42	5.24	2.75	2.96	4.32	5.40	3.16	3.35	4.30
5.83	3.84	4.01	4.75	5.93	4.01	4.18	4.85	5.46	3.09	3.29	4.58	5.69	3.56	3.74	4.65

Combined System SCOP

									Ventacity H/ERV Performance					Cooling System Performance				
.ING										VS/CM Watts	Ventilation Load (No Recovery)	VS/CM Recovered	VS/CM Load Remaining	VS/CM COP	VRF COP	Gas Pack RTU COP	Elec. Res. RTU COP	Heat Pump RTU COP
Clim	ate Zone	Very cold	Cold/dry	Cold/humid	Marine	Mixed	Hot/humid	Hot/dry										
	N	58	467	560	52	1694	3611	1965										
Indo	or DB (ref)			74	4			79										
Indoc	or WB (ref)			63	3			61										
Tj	°F Range			Fracti	ional bin hours,	nj/N												
72	<74.5	0.336	0.289	0.316	0.335	0.284	0.190	0.213		1,886	-16,025	-12,219	-3,806	1.9	6.4	2.9	2.9	2.9
77	74.5-79.5	0.192	0.154	0.21	0.137	0.232	0.305	0.143		1,886	2,038	1,554	484	0.2	6.7	3.3	3.3	3.3
82	79.5-84.5	0.202	0.157	0.209	0.137	0.199	0.255	0.154	Selection data	1,886	20,100	15,308	4,792	2.4	6.1	3.7	3.7	3.7
87	84.5-89.5	0.162	0.138	0.147	0.104	0.150	0.146	0.131		1,886	38,163	29,099	9,064	4.6	5.4	3.5	3.5	3.5
92	89.5-94.5	0.089	0.172	0.095	0.154	0.100	0.081	0.163	Selection data	1,886	56,225	42,871	13,354	6.7	4.7	3.2	3.2	3.2
97	94.5-99.5	0.016	0.076	0.019	0.094	0.029	0.019	0.109		1,886	74,288	56,643	17,644	8.8	4.1	3.0	3.0	3.0
102	99.5-104.5	0.002	0.013	0.005	0.028	0.006	0.003	0.058		1,886	92,350	70,416	21,934	10.9	3.5	2.8	2.8	2.8
107	104.5-109.5	I	0.002	-	0.007	0.001	5 	0.025		1,886	110,413	84,188	26,224	13.1	3.2	2.6	2.6	2.6
112	>109.5		—	_	0.002	. —	1	0.004		1,886	128,475	97,961	30,514	15.2	2.9	2.4	2.4	2.4


	,																	
		Cold/Dry			Cold/Humid				Marine					Mi	xed			
		VRF	Gas Pack RTU	Elec. Res. RTU	Heat Pump RTU	VRF	Gas Pack RTU	Elec. Res. RTU	Heat Pump RTU	VRF	Gas Pack RTU	Elec. Res. RTU	Heat Pump RTU	VRF	Gas Pack RTU	Elec. Res. RTU	Heat Pump RTU	
		3.0	2.1	2.1	2.1	3.0	2.1	2.1	2.1	3.0	2.1	2.1	2.1	3.0	2.1	2.1	2.1	
		1.8	1.0	1.0	1.0	1.8	1.0	1.0	1.0	1.8	1.0	1.0	1.0	1.8	1.0	1.0	1.0	
		3.3	2.7	2.7	2.7	3.3	2.7	2.7	2.7	3.3	2.7	2.7	2.7	3.3	2.7	2.7	2.7	
		4.8	4.3	4.3	4.3	4.8	4.3	4.3	4.3	4.8	4.3	4.3	4.3	4.8	4.3	4.3	4.3	
		6.2	5.8	5.8	5.8	6.2	5.8	5.8	5.8	6.2	5.8	5.8	5.8	6.2	5.8	5.8	5.8	
		7.7	7.4	7.4	7.4	7.7	7.4	7.4	7.4	7.7	7.4	7.4	7.4	7.7	7.4	7.4	7.4	
		9.2	9.0	9.0	9.0	9.2	9.0	9.0	9.0	9.2	9.0	9.0	9.0	9.2	9.0	9.0	9.0	
		10.7	10.6	10.6	10.6					10.7	10.6	10.6	10.6	10.7	10.6	10.6	10.6	
										12.3	12.2	12.2	12.2					
	Ventilation SCOP	4.1	3.5	3.5	3.5	3.5	2.8	2.8	2.8	4.2	3.6	3.6	3.6	3.5	2.9	2.9	2.9	
	Heating System SCOP	5.75	3.23	3.23	3.23	6.03	3.27	3.27	3.27	5.69	3.17	3.17	3.17	6.00	3.28	3.28	3.28	
	% Vent. Load														J			
	20%	5.42	3.28	3.28	3.28	5.52	3.18	3.18	3.18	5.40	3.26	3.26	3.26	5.51	3.20	3.20	3.20	
Combined	25%	5.34	3.30	3.30	3.30	5.39	3.16	3.16	3.16	5.32	3.28	3.28	3.28	5.38	3.18	3.18	3.18	
System SCOP	30% 35%	5.26 5.17	3.31	3.31	3.31 3.32	5.27	3.14	3.14	3.14 3.11	5.25	3.30	3.30 3.33	3.30 3.33	5.26	3.16	3.16	3.16	
	35%	5.17	3.32	3.32	5.52	5.14	3.11	3.11	3.11	5.18	3.33	5.55	3.55	5.14	3.14	3.14	3.14	

MODELING HVAC WITH SYSTEM COP – VRF & H/ERV


Based on 70% Heating and Cooling Load, 30% Outside Air (Ventilation) Load

MODELING HVAC WITH SYSTEM COP ELECTRIC HEATING, NO COOLING & H/ERV IN A HIGH PERFORMANCE BUILDING


Based on 50% Heating and Cooling Load, 50% Outside Air (Ventilation) Load

MODELING HVAC WITH SYSTEM COP ELECTRIC HEATING, NO COOLING & H/ERV

Based on 70% Heating and Cooling Load, 30% Outside Air (Ventilation) Load

MODELING HVAC WITH SYSTEM COP ELECTRIC HEATING, NO COOLING & H/ERV IN A HIGH PERFORMANCE BUILDING

Based on 50% Heating and Cooling Load, 50% Outside Air (Ventilation) Load

SIGNIFICANT ROI

Ventacity Comparison: North Beach Elementary ERV-1 @ 3000CFM, 1"W.C.

Assumption	Parameter	Competitor		Ventacity
2	Fan Power (W)	6114		3421
	Delivered (SA) Temperature Deg F	53.4		57.8
	Heat Recovered (W)	30785		34956
	Heat Recovered (BTU/h)	104976		119200
٠	Hours per day	10		10
٠	Days per month	25		25
<u>ر ب</u>	Months per year	9		9
	Heat Recovered per month (kW.h)	7696		8739
	Heat Recovered per year (kW.h)	69266		78651
	HRV/ERV CoP	5.0		10.2
	Heat Load from fresh HRV/ERV air (W)	15772		11613
	Heat Load from fresh HRV/ERV air (BTU/h)	53784		39600
•	heat Pump CoP (heating)	1	-	1
	Heat pump power to heat HRV/ERV SA (W)	15772		11613
	Power: Heat Pump Plus fan (W)	21886		15034
	Electrical rate \$/kWh	 0.15		0.15
	Monthly electric bill HRV/ERV Power plus			
	Power to heat fresh air. \$	\$ 821	\$	564
	Annual electic bill to heat fresh air \$	\$ 7,387	\$	5,074
	Savings Per Unit	\$ 2,313		
	Savings for 6 Units	\$ 13,876.37		
	Savings for 6 Units over 10 Years	\$ 138,763.75		

BIGGER
 VOLUMES
 EQUALS BIGGER
 SAVINGS

 SCHOOL USED TEN YEAR BOND

 SAVINGS
 MORE THAN
 COVERED
 INCREASED
 COST OF
 PROJECT OVER
 LIFE OF LOAN

 COP IS <u>DOUBLE</u> THAT OF CONVENTIONAL ERVS

TWO KEY COMPARISON PERFORMANCE DRIVERS

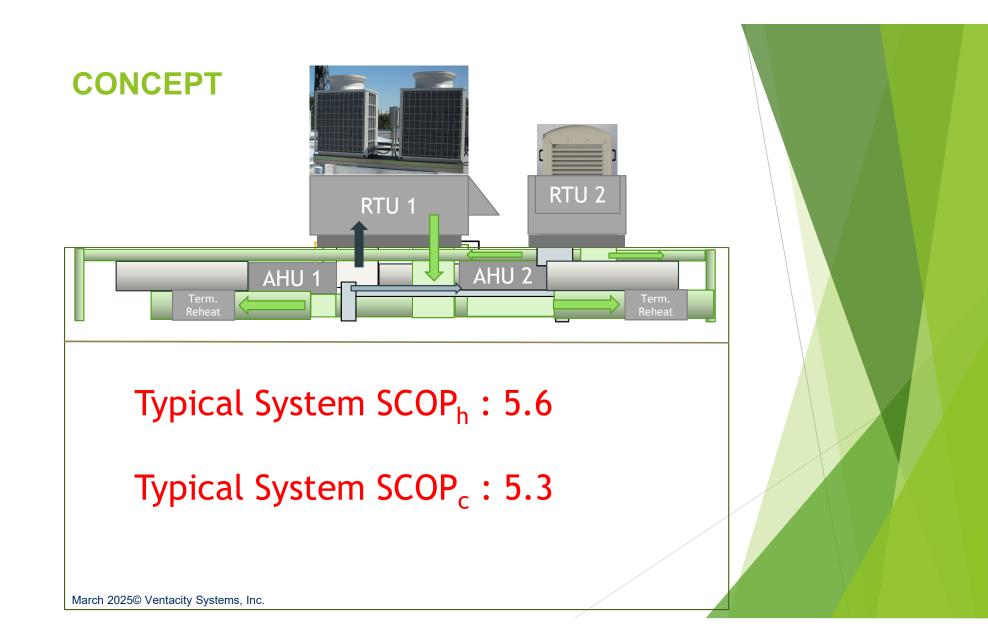
HVAC whole-system COP

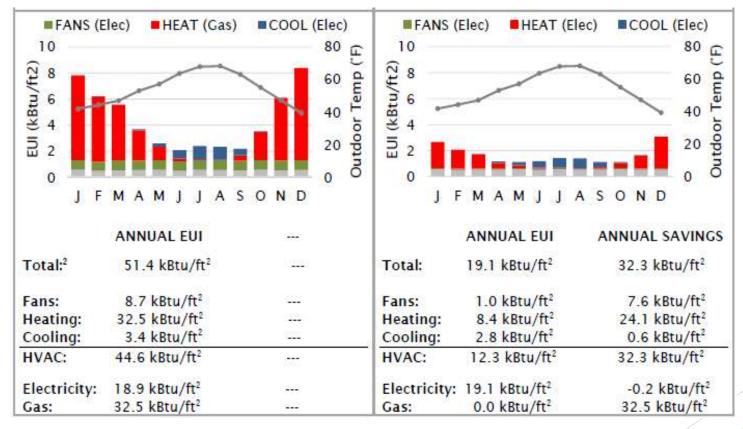
At average heating conditions in	n one floo	or of a New Y	ork highris	e:
ERV recovery efficiency:		70	85	0
Ventilation rate:	cfm	1,000	1,000	1,000
ERV fan power:	W	600	390	510
Heating hours per year:	hrs	3,650	3,650	3,650
OAT:	F	35	35	35
IAT:	F	70	70	70
delta T:	F	35	35	35
Energy recovered:	Btu/hr	26,460	32,130	0
Energy not recovered:	Btu/hr	11,340	5,670	37,800
Vent. fraction of total load	%	19.4	10.8	44.6
Fan energy used:	Btu/hr	2,047	1,331	1,740
Heating COP:		0.75	3.00	0.75
Ventilation Gas Energy use :	therms	355		1,183
Ventilation Fan Energy use:	kWh	3,154	10,283	3,066
At average conditions:				
Ventilation System COP:		12.9	24.1	na
Whole System COP:		3.1	5.3	0.75
(Assuming envelopel heating load of 3.9 tons	s)			

Designing for "off"

SYSTEM COP COMPARISON

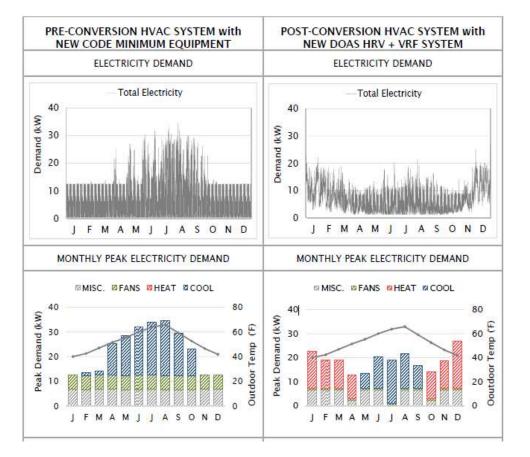
SYSTEM COP = 1.02


- High Fan Power
- Modest H&C COP
- Tempering Outside Air "Always On"



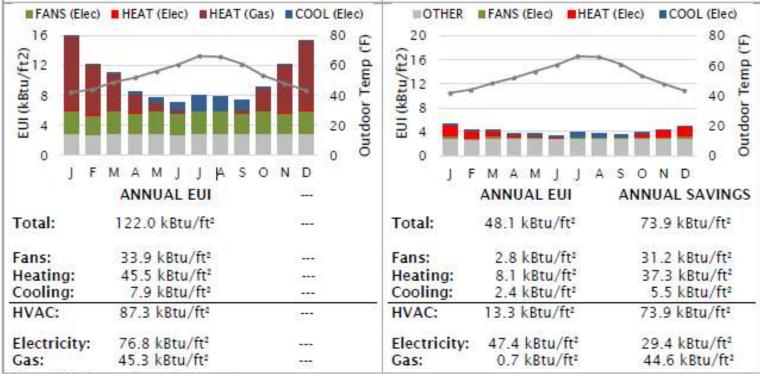
SYSTEM COP = 4.94

- High H&C COP w/Heat Pumps
- Low Fan Power
- Extremely Low OA Load
- Design for Off


LAW OFFICE RESULTS 71% HVAC ENERGY SAVINGS

March 2025© Ventacity Systems, Inc.

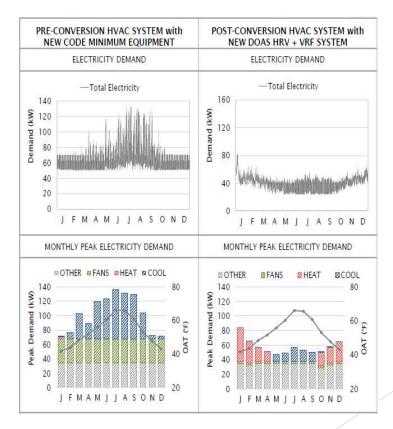
34


LAW OFFICE RESULTS DEMAND REDUCTION

March 2025© Ventacity Systems, Inc.

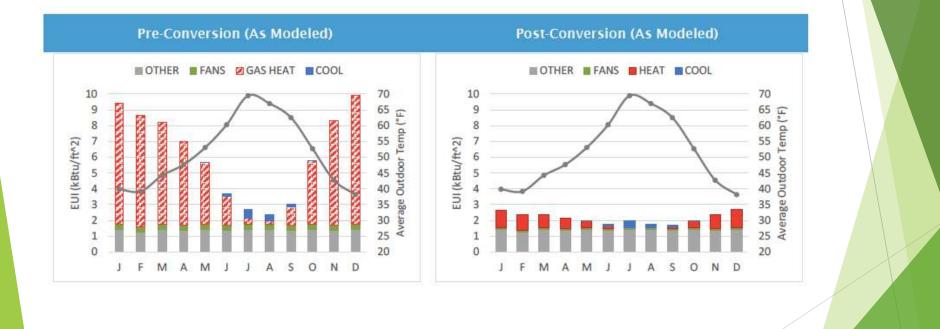
35

AIRPORT TERMINAL RESULTS 84% HVAC ENERGY SAVINGS


1 Minor additive discrepancies are due to rounding.

March 2025© Ventacity Systems, Inc.

36


AIRPORT TERMINAL DEMAND REDUCTION

- Peak January Demand (highest post-conversion month): ~72 kW to 83 kW (15% increase)
- Peak July Demand (highest pre-conversion month): ~138 kW to 58 kW (58% reduction)
- Overall, demand is essentially flattened, with average summer demand slightly lower than average winter demand.

37

OFFICE IN PORTLAND, OR 84% HVAC ENERGY SAVINGS

GREAT RESULTS

PROJECT	HVAC SAVINGS %	WHOLE BUILDING SAVINGS %
Seattle airport/office	85%	61%
Portland engineering office	84%	66%
Portland office	79%	64%
Portland law office #2	75%	53%
Portland law office #1	73%	63%
Portland restaurant	73%	20%
Corvallis office	71%	39%
Seattle office	69%	42%
Net Zero preschool	58%	50%
Tacoma office	57%	40%
Montana dorms	52%	24%
Rural school	50%	35%
Montana office	45%	29%
Corvallis restaurant	43%	8%

THANK YOU, from all of us at www.Ventacity.com! barry@ventacity.com 603-498-9005