BUILDINGENERGY BOSTON

Indoor Air Quality in Affordable Housing: Issues, Occupant Perceptions and Solutions

Neelakshi Hudda (Tufts University) Greer Hamilton (Boston University) John Durant (Tufts University)

Curated by Marc Rosenbaum (Energysmiths) and Amanda Garvey (Thornton Tomasetti)

Northeast Sustainable Energy Association (NESEA) February 28, 2022

PRESENTERS

Neelakshi Hudda, PhD

Research Assistant Professor Civil and Environmental Engineering, Tufts University Areas of Interest: Urban air pollution, highway and aviation emissions, ambient and indoor characterization, exposure assessment, mobile monitoring, mitigation strategies. <u>Neelakshi.hudda@tufts.edu</u> 617-627-3522

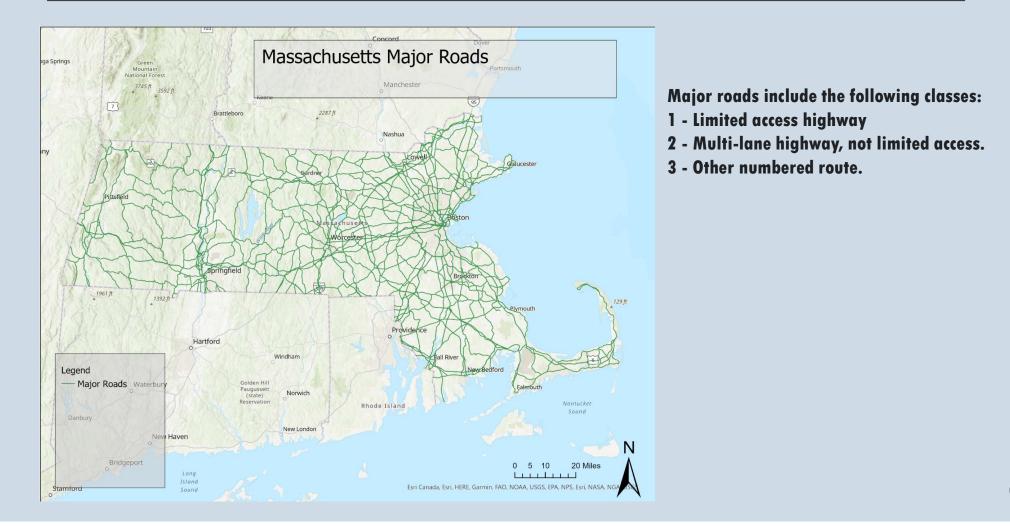
John L Durant, PhD, P.E. Professor Civil and Environmental Engineering, Tufts University Areas of Interest: Monitoring and modeling of ambient and indoor air quality in support of air pollution control, exposure reduction, and air pollution epidemiology John.durant@tufts.edu 617-627-5489

Greer Hamilton, MSW PhD Candidate Boston University School of Social Work Areas of Interest: Health equity, racial justice, the built environment, and community-engaged research <u>Greer.hamilton@tufts.edu</u>

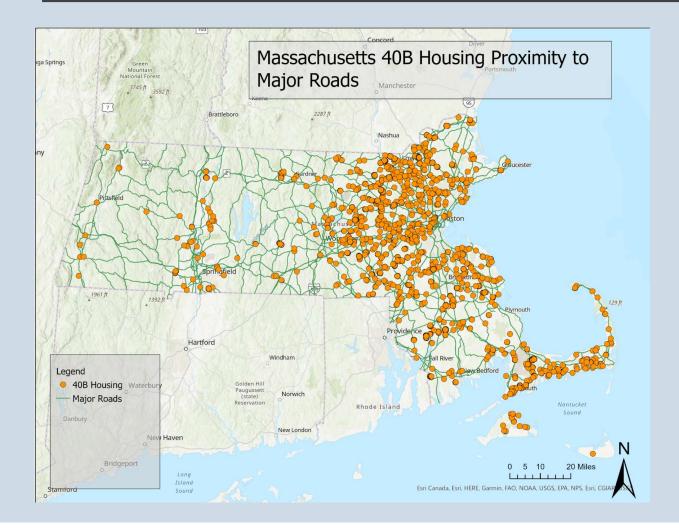
OBJECTIVES

- I. Describe how near-highway pollution impacts indoor air quality (IAQ) and health of residents in near-highway housing.
- 2. Describe health benefits of installing and maintaining ventilation systems that improve indoor air quality.
- 3. Explain the difference between IAQ impacts of whole-building ventilation strategies versus individual-level behaviors.
- 4. Engage in discussions to identify opportunities, challenges, and solutions for improving IAQ in affordable residential buildings.

SESSION OUTLINE


- Part I: Presentation (45 minutes)
- Part II: Questions and Answers (20 minutes)
- Part III: Break-out Groups (25 minutes)

PART I: THE PRESENTATION


Issues

- Affordable housing near busy roadways
- Transportation-related air pollution and health effects near busy roadways
- Indoor pollution of outdoor origin
- Sustainable Air Quality in Affordable Housing (SAQIAH)
 - Air quality monitoring results
 - Occupant perceptions
- Solutions (our suggestions)

AFFORDABLE HOUSING NEAR BUSY ROADS

AFFORDABLE HOUSING NEAR BUSY ROADS

- 52% of all units are within 200 m of busy roads
- ~500 buildings are within 100 m of major roads

Data Credits: Noémie Sportiche, Tim Reardon and Jessie Patridge, **MAPC**; Mapping Credits: Grace Anderson, Tufts

TRANSPORTATION-RELATED AIR POLLUTION (TRAP)

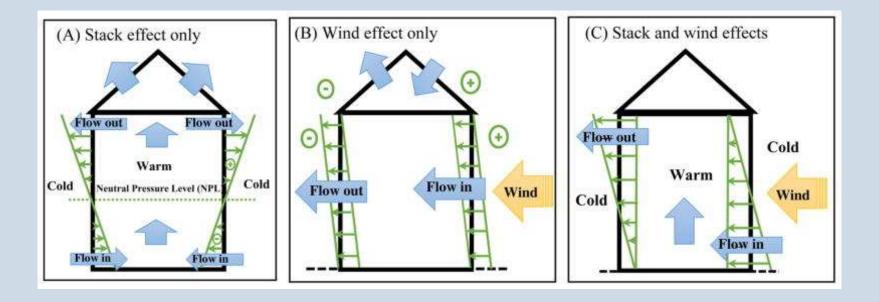
 Cars, buses, trucks, trains, and airplanes produce a wide range of pollutants including

Gases	 Carbon monoxide (CO) Nitrogen oxides (NOx) Volatile organic compounds (VOC) Carbon dioxide (CO₂)
Particles	 Ultrafine particles (<100 nanometers) Particle-bound metals and semi-volatile organic compounds Black carbon (soot)

TRANSPORTATION-RELATED AIR POLLUTION (TRAP)

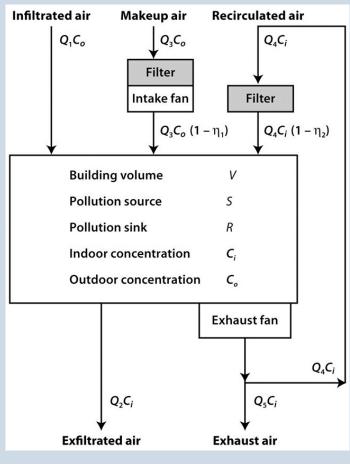
• TRAP accounts for a significant fraction of annual emissions in the US

	Pollutant Emissions (million tons/year)		
	CO	VOC	NOx
Vehicle type			
Cars + motorcycles	20.4	1.7	1.7
Pick-ups + SUVs	13.5	1.2	1.1
Gasoline trucks	4.7	0.4	0.3
Diesel trucks + buses	0.3	0.1	2.1
Total On-Road Vehicles	38.9	3.4	5.2
Aircraft	l l	0.2	0.2
Railroads	0.1	0	0.7
Marine Vessels	0.1	0	0.8
Other Non-Road	18	2.6	4.2
Total Mobile Sources	58.1	6.2	11.1
Total All Sources	77.7	15.9	16.3
% Mobile Sources	75%	39%	68%
	Source: US EPA	4	


HEALTH EFFECTS

• Proximity to roadways and exposure to traffic-related air pollution is associated with adverse cardiovascular, respiratory, and neurological health impacts

	Health effects	Example study	Study
Cardiovascular	 Increased heart rate, blood pressure Increased rates of heart attacks 	Living within ~150 m of highways or ~50 m of major roads is associated with higher risk of coronary mortality than living farther from high-traffic roadways.	Gan et al., 2010
Respiratory	 Decreased lung function Increased rates of atherosclerosis, COPD 	Causal relationship between exposure to TRAP within 300-500 m of a highway or major road and asthma in children and reduced lung function in adults	HEI, 2010
Neurological	Degenerative diseasesMemory loss	Living within ~150 m of a highway or ~50 m of a major road is associated with incidence of non-Alzheimer's dementia, Parkinson's disease, Alzheimer's disease and multiple sclerosis	Yuchi et al., 2020


INFILTRATION

• Air pollutants of outdoor origin can infiltrate into buildings, particularly leaky buildings and buildings with poor ventilation systems.

VENTILATION

Forced ventilation

Natural ventilation

A multi-family residential building near a highway in a city

 As a result of both infiltration and ventilation, pollutants of outdoor origin can account for over 50% of indoor air pollution levels in buildings

FACTORS THAT GOVERN INDOOR AIR QUALITY

Categories of factors affecting pollutant concentrations indoors:

- Pollutant attributes

- a. Outdoor concentration
- b. Whether the pollutants are gases or particles
- c. Pollutant dynamic properties (reactivity for gases, size of particles)

2. Building attributes

- a. Air-exchange rates
- b. Effectiveness of air cleaning systems (if present)
- c. Types of materials used in the building and the furnishings

3. Occupant behavior

- a. Amount of time spent indoors
- b. Occupant density
- c. Activities that influence pollutant emissions and exposure

SUSTAINABLE AIR QUALITY IN AFFORDABLE HOUSING (SAQIAH), A HUD-FUNDED STUDY IN SOMERVILLE, MA

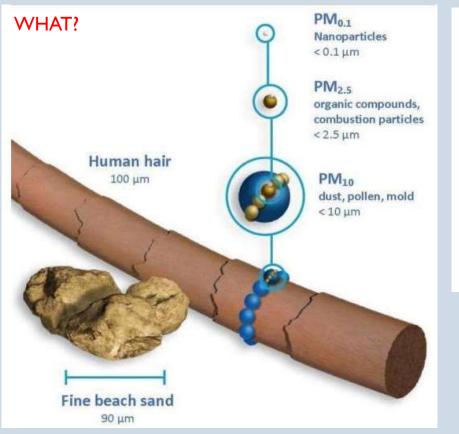
<u>Study goal:</u>

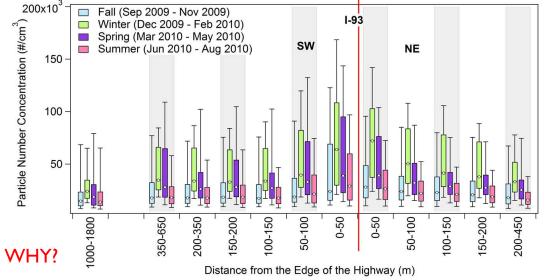
 Develop a data-driven framework for ventilation considerations for multifamily housing near highways that accounts for air quality benefits, indoor comfort, and sustainability.

Study objectives:

- (1) Measure indoor air quality in buildings with different ventilations systems
- (2) Quantify benefits derived from use of varying degrees of filtration (no filtration to MERVIO)
- (3) Hold a stakeholder workshop to generate guidance that can be used to inform and improve air quality in multi-family housing near highways

INDOOR AIR QUALITY

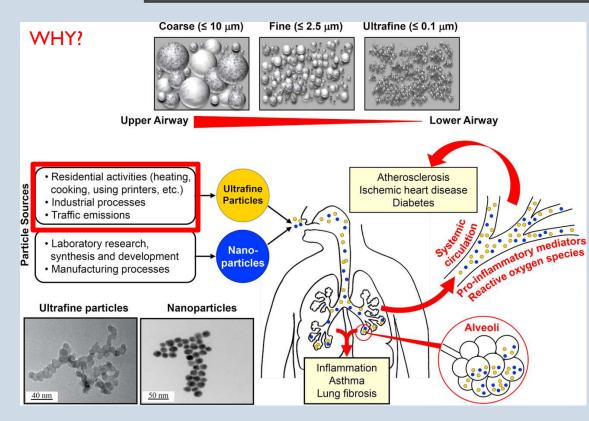

https://www.epa.gov/indoor-air-quality-iaq/interactive-tourindoor-air-quality-demo-house


INDOOR AIR QUALITY

Wass.gov PART OF Sources of Indoor Air Pollution	Construction and renovation generated pollutants in occupied buildings * Learn what methods can be used to reduce and/or prevent exposure to pollutants from construction or renovation of occupied buildings.
What you need to know For Sources of Indoor Air Pollution	Ventilation systems >
SHOWING RESULTS Improper chemical storage or usage + A list of examples of improper storage of chemicals in schools' science laboratory. These could create indoor environmental pollutants as well as potential safety hazards.	PCBs (Polychlorinated Biphenyls) in building materials > Information about PCB-containing materials in the indoor environment of schools and other public buildings.
Bird waste and related diseases * Learn about the risk factors bird waste in the air, and cleanup procedures.	Pressure-treated wood use in playground equipment Learn about precautions, types, health effects of exposure, and regulations.
Indoor ozone >	Trichloroethylene (TCE) in indoor air + Learn about TCE exposure, risks, and more.

https://www.mass.gov/sources-of-indoor-air-pollution/need-to-know

POLLUTANT OF INTEREST: ULTRAFINE PARTICLES


Ultrafine particle number concentration (count/cm³) vs. distance from I-93 in Somerville, MA

Ultrafine particles are produced during fuel combustion and are present at high concentrations near busy roadways

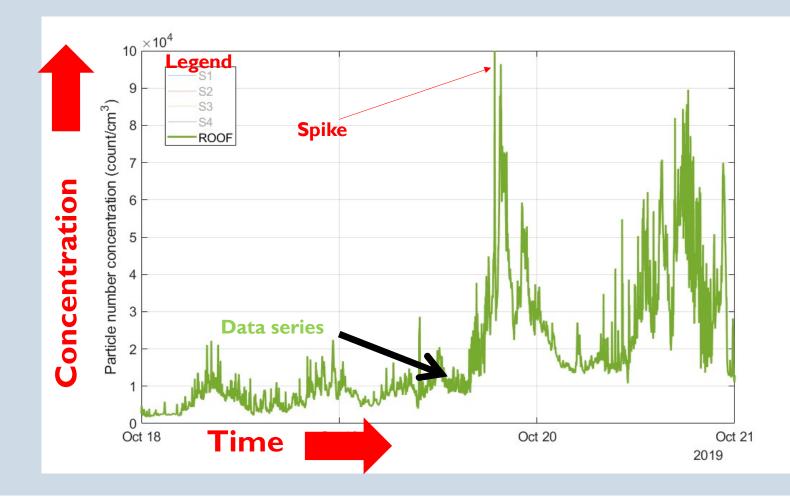
17

Particles smaller than 10 and 2.5 microns are regulated by EPA, but not ultrafine particles that are smaller than 0.1 micron.

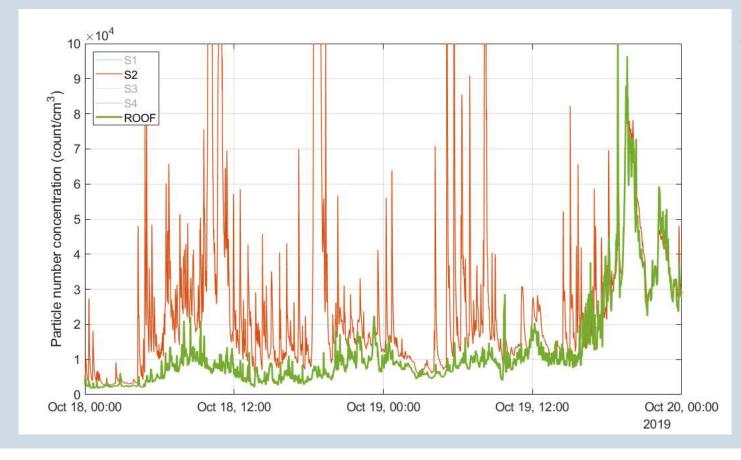
ULTRAFINE PARTICLES & HEALTH

A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. Li et al. 2016

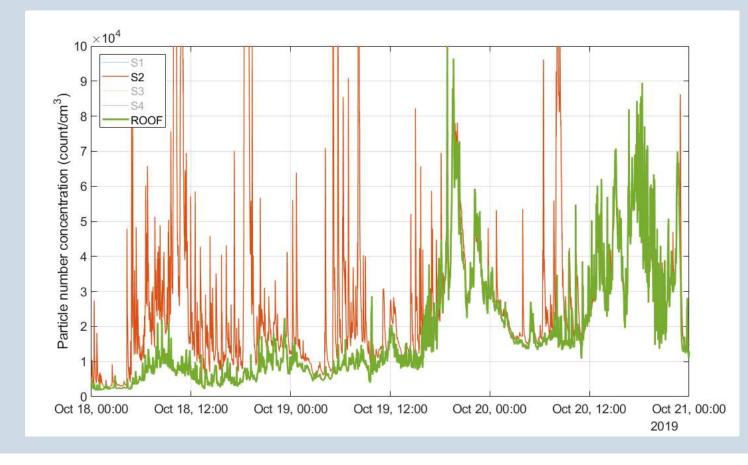
Ultrafine particles


- are readily inhaled
- are deposited in different
 locations in the respiratory
 tract, and depending on their
 size,) can penetrate deep into
 the lungs
- can diffuse into the blood stream and become widely distributed in the body
- and can adversely impact different organs

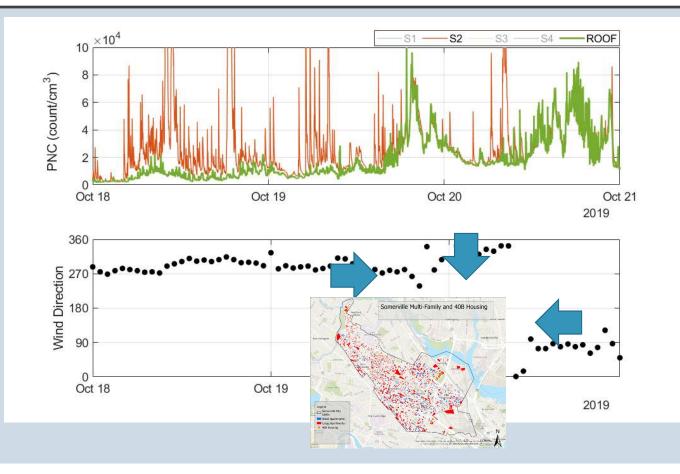
SAQIAH: STUDY DESIGN


- Two groups of participants:
 - I. Survey only
 - Survey a larger set of participants than air quality monitoring participants in a building
 - 2. Air quality monitoring + survey
 - Monitoring in both warm and cold seasons
 - Simultaneous monitoring indoors in multiple homes and outdoors/roof
 - Also unoccupied apartments and lately common areas
- Purposeful selection of buildings:
 - Varying degree of filtration (no filtration, MERV8, MERV10)
 - Variation in HVAC design
 - Located near-highways (>20,000 vehicles per day)

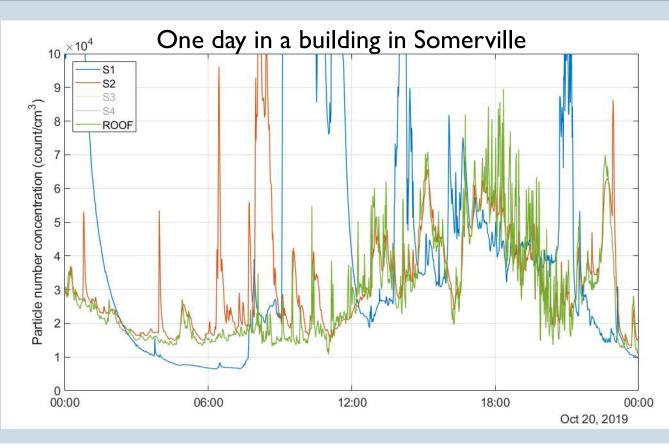
DATA WILL BE SHOWN IN A TIME SERIES FORMAT



OUTDOOR-ORIGIN POLLUTION IS OBSERVED INDOORS

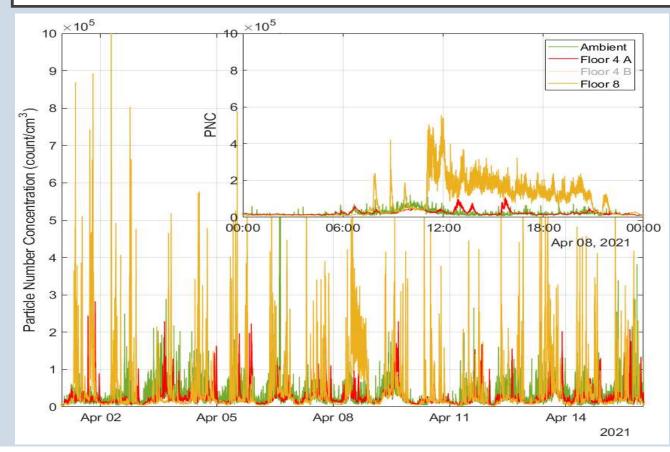

- Same temporal patterns observed in the baseline concentrations
- Indoor at least as high as outdoors + additional influence of indoor sources

INDOOR RESPONDS TO OUTDOOR CHANGES



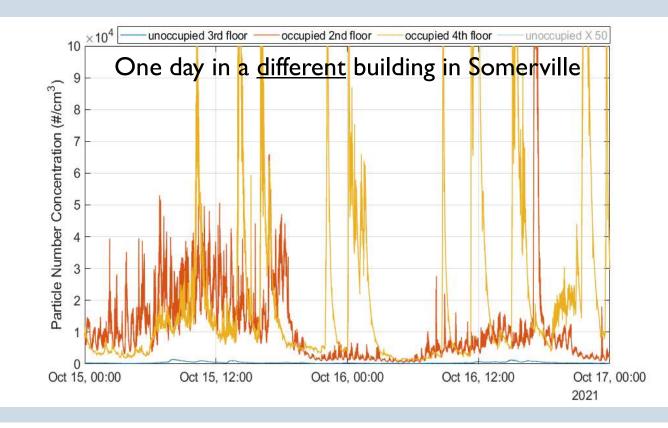
- Outdoor varies f(meteorology, distance to highway, season, etc.)
- Indoors in response to the changes outdoors.

INDOOR AND OUTDOOR POLLUTION LEVELS INCREASE WHEN BUILDING IS DOWNWIND OF HIGHWAY


OUTDOOR AND INDOOR POLLUTION PATTERNS ARE SIMILAR IN MULTIPLE APARTMENTS – A BUILDING WIDE IMPACT

- Simultaneous increase in concentrations on a fall evening and night.
- Similar pattern observed on roof and in two apartments on the building (and additional indoor influence)

Building has LEED Certification (Platinum Level) & ENERGY STAR Mechanical ventilation system has a MERV8 filter


OUTDOOR AND INDOOR POLLUTION PATTERNS ARE SIMILAR IN MULTIPLE APARTMENTS – A BUILDING WIDE IMPACT

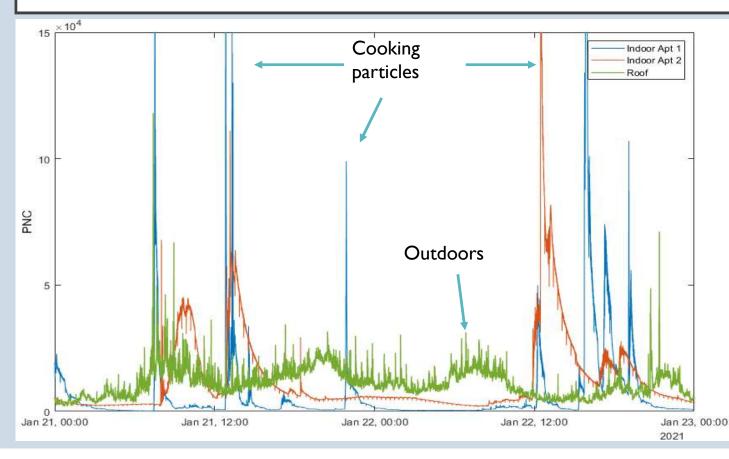
 Two weeks in a high-rise building in downtown Boston

Fresh air + heat supply to common areas; kitchen and bathroom exhaust; window AC and baseboard heating in apartments

OUTDOOR AND INDOOR PATTERNS ARE THE SAME IN MULTIPLE APARTMENTS – A BUILDING WIDE IMPACT

- Data is shown for two occupied apartments on different floors and one unoccupied apartment
- Unoccupied apartment same pattern but much lower concentration.

The building has LEED Certification (Silver) and MERV8 filtration


SAME PATTERN AS OUTDOORS IS OBSERVED INDOORS IN MULTIPLE APARTMENTS – A BUILDING WIDE IMPACT

Unoccupied apartment data X 50 times (same pattern that is more visible now) but much lower concentration.

What role is mechanical ventilation playing in moderating outdoor pollution from entering indoors?

SAME PATTERN AS OUTDOORS IS NOT OBSERVED INDOORS IN MULTIPLE APARTMENTS – NO EVIDENCE OF A BUILDING WIDE IMPACT

- No simultaneous increase in outdoor and indoor particle concentrations.
- Evidence of indoor generation of particles due to cooking (not smoking)

Energy Star 3; LEED Platinum; MERV10 in units and each apartment has its own AHU

KEY OBSERVATIONS AND TRENDS FROM OUR DATASET

- 1. Outdoor and indoor concentrations increase when buildings are downwind of the highways and busy roadways.
 - The patterns are the same indoors in multiple apartments (i.e., building wide) and outdoors.
- 2. Building envelope and ventilation system offer little to no protection from ambient ultrafine pollution a proxy of traffic-related air pollution.
 - Indoor concentrations frequently at least as high as outdoors in a building with no filtration and in another building with a centralized air handling (MERV8).
 - Indoor concentrations in a building with individual AHU for each apartment did not show concurrent patterns.
- 3. Indoor concentrations are also highly impacted by indoor activities, particularly cooking.
 - Highly dependent on occupant's ventilation practices (range hood operation, window opening) and indoor-origin pollution >> outdoor-origin pollution observed indoors.

OCCUPANT PERCEPTIONS

- Survey
- Occupant demographics
- Survey results
 - I. Satisfaction with indoor air quality
 - 2. Reasons why people were dissatisfied with their air quality
 - 3. Reasons for opening windows
 - 4. Cooking
 - 5. Knowledge of ventilation systems
- Key takeaways

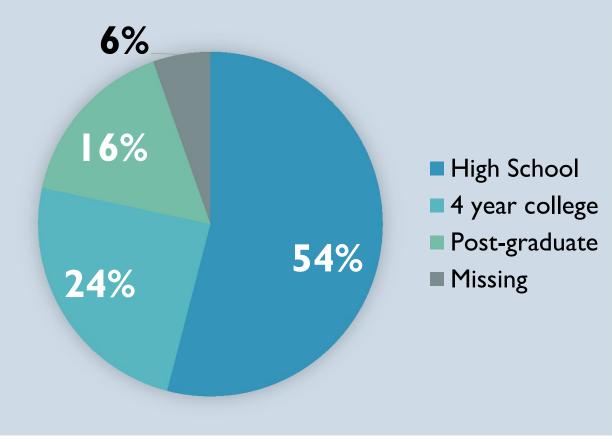
INDOOR AIR QUALITY AND VENTILATION PRACTICES SURVEY

The survey has the following modules:

- I. Demographics
- I. Indoor Air Quality Satisfaction
- 2. Kitchen and Cooking
- 3. Bathroom Ventilation
- 4. Bedroom Ventilation
- 5. Living Room and Other Room Ventilation
- 6. Window Operation (Motivation for opening/closing windows or doors)
- 7. Ventilation System

Investigator Data Collection	Module 1	
Date of data collection		
Name of the Investigator		
Participant Name		
Participant Address		
Address Street		
Address Apartment number		
Address City		
Address Zipcode		
What aspect of the study are they participating in?	 Air quality monitoring and survey Survey only 	
Is this the first phase of monitoring or the only survey for the unit?	O Yes O No	
What phase of air quality monitoring is this form being completed in ?	O Warmer weather O Cooler weather	
Does anyone in your household smoke?	O Yes O No	
Unit Characteristics		
1. What floor is your unit located on?		
 How many rooms are in your unit? 	Bedroom = 1 Bedroom = 2 Bedroom = 2+ Bedroom = 2 Bedroom = 2 Kitchem = 2 Kitchen in the living area Other rooms	

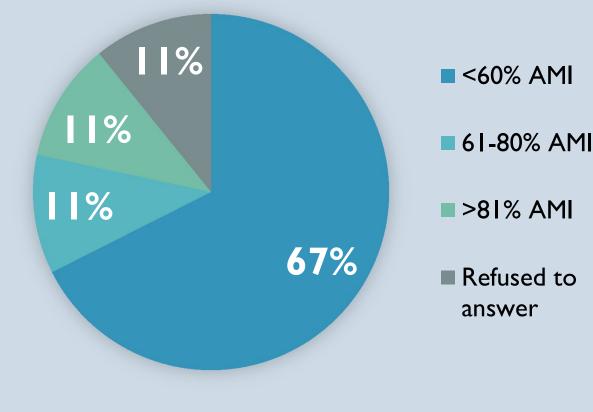
DEMOGRAPHICS


- 40+ surveys have been collected in multi-family buildings.
- Age of occupants: 18-68 years old (average = 40 years old).
- Length of time in apartment: 19 days-12 years (average = 3.5 years).
- 70% of occupants identified as women.
- 73% of occupants identified as Black/African American, Hispanic or Latinx, or as another racial/ethnic group.

32

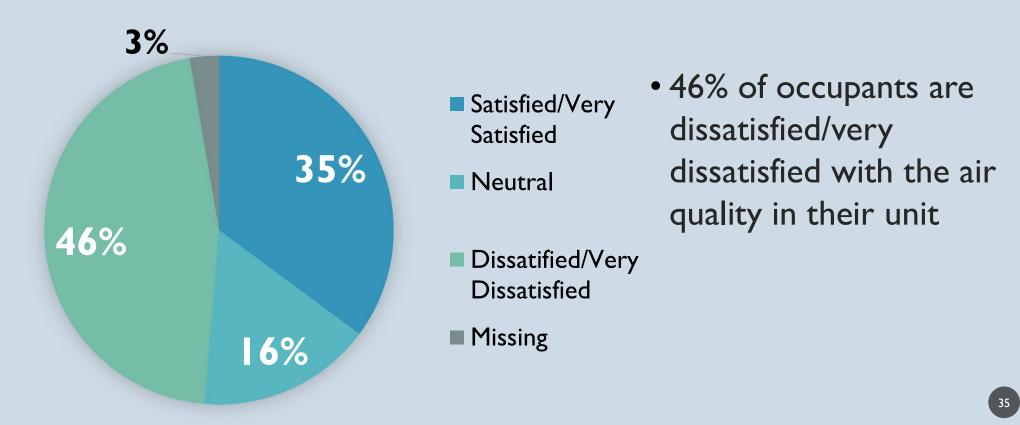
• 65% of occupants worked outside of their homes.

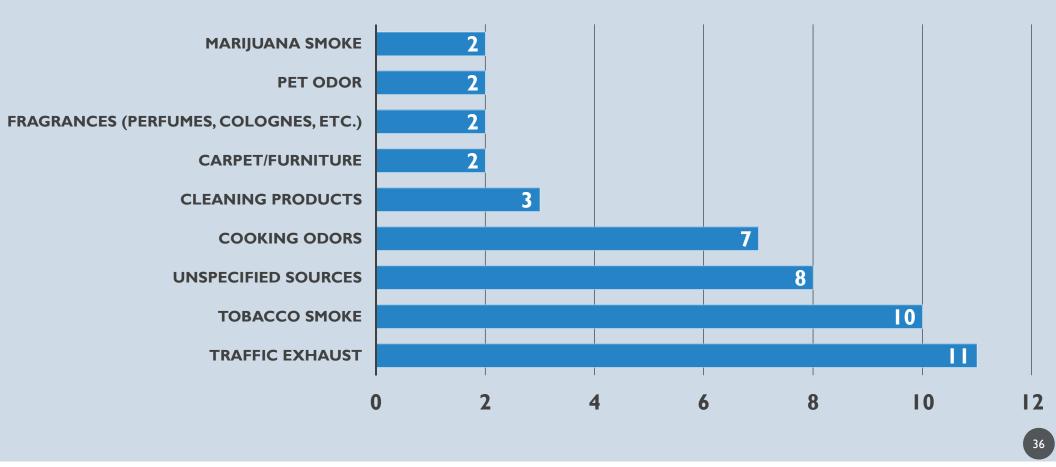
OCCUPANT EDUCATION


Q: What is the highest grade or year of school you have completed?

 54% of occupants have a 12th grade education or less.

HOUSEHOLD INCOME


Q: What is your annual household income?


 67% of occupants earn less than 60% of the Annual Median Income (AMI, \$97,000 for Somerville).

SATISFACTION WITH INDOOR AIR QUALITY

Q: How satisfied are you with the air quality in your unit?

REASONS FOR BEING DISSATISFIED WITH AIR QUALITY

REASONS FOR OPENING AND CLOSING WINDOWS

Motivation for opening windows or doors

How important are each of the following reasons why you and members of your household typically open windows or doors to the outside (outdoors)? Check all that apply. Do not include when you open them for a minute or two, or to enter or exit your home. If you never open them for a given reason, please check the box "Never open for this reason."

Please comment on your reasons for opening windows and doors (at the bottom) if your reasons or motivations weren't adequately addressed in the survey.

	very important	somewhat important	slightly important	not important at all	never open for this reason
To cool the house					
To warm the house					
To provide air movement					
To remove odors					
To remove moisture					
To air out during house cleaning					
To remove smoke, such as from cigarettes or cooking					
To provide draft for cooking appliances or exhaust fan					
To save energy					
To allow pets access					
Other					

Any other reason I may have missed that you can think of?

- 5-point Likert scale
 - Motivation for opening windows or doors:
 - Provides 10 potential motivations
 - Opportunity to specify another motivation
- Motivation for closing windows or doors:
 - Provides 16 potential motivations

37

• Opportunity to specify another motivation

REASONS FOR OPENING WINDOWS

- 53% of occupants open windows to remove odors.
- 47% of occupants open windows to air out home during cleaning.
- 51% of occupants open windows to provide air movement.
- 44% of occupants open windows to remove cigarette smoke and cooking odors.

Reported percentages include "very important", "somewhat important" and "slightly important"

REASONS FOR CLOSING WINDOWS

- 81% of occupants closed windows to reduce pollutants or odors from outdoors.
- 68% of occupants closed windows to keep out outdoor air.

39

- 70% of occupants closed windows to keep out dust.
- 75% of occupants closed window to keep out dust.

Reported percentages include "very important", "somewhat important" and "slightly important"

COOKING AND VENTILATION PRACTICES

- 92% of occupants have a range hood and exhaust fan over kitchen stove.
 - 48% of occupants said range hood blows air back into the room.
 - 52% of occupants said range hood blows air outdoors. Lack of understanding of ventilation vs. a lived experience
- 60% of occupants reported their unit retained cooking odors.
- For occupants with windows in their kitchen, 66% said it was important to open windows to provide a draft for cooking appliances and exhaust fans.

KNOWLEDGE OF WHOLE-UNIT VENTILATION SYSTEMS

- 76% of occupants indicated that operation of their ventilation system was explained to them when they moved in.
- 62% of occupants believed they understood how their ventilation system works.
- 68% of occupants indicated they knew how to properly control their ventilation system.

Nearly half of occupants surveyed are dissatisfied with air quality in their units.

KEY TAKEAWAYS FROM THE SURVEYS

Odors are the main cause of complaint (cooking, cigarette smoke, and traffic emissions).

Nearly half of occupants surveyed open their windows to improve air circulation and air quality.

Occupants aren't receiving education or materials needed for them to understand their ventilation systems.

SOLUTIONS

FACTORS THAT GOVERN INDOOR AIR QUALITY

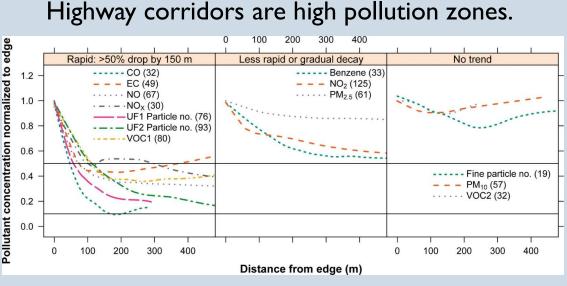
• Categories of factors affecting pollutant concentrations indoors:

Pollutant attributes

- a. Outdoor concentration
- b. Whether the pollutants are gases or particles
- c. Pollutant dynamic properties (reactivity for gases, size of particles)

Building attributes

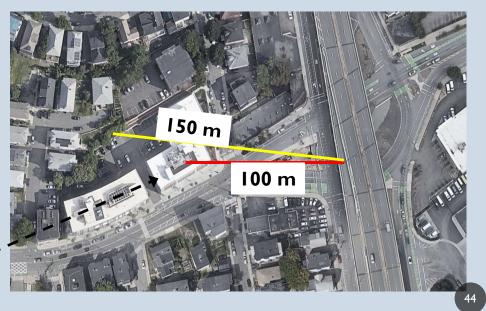
- Air-exchange rates
- b. Effectiveness of air cleaning systems (if present)
- Types of materials used in the building and the furnishings


B. Occupant behavior

- a. Amount of time spent indoors
- b. Occupant density
- c. Activities that influence pollutant emissions and exposure

Each factor is also an opportunity to improve indoor air quality.

OPPORTUNITIES TO IMPROVE INDOOR AIR QUALITY


- I. Pollutant attributes
 - a. Outdoor concentration

Karner et al., EST 2014

Air intake for a residential building

Solution: Locate buildings and air intakes away from high pollution zones.

OPPORTUNITIES TO IMPROVE INDOOR AIR QUALITY

- 2. Building attributes
 - a. Effectiveness of air cleaning systems
 - +d. Effectiveness of air handling systems in hallways

- We observed that MERV8 filters are ineffective at removing ultrafine particles (MERV8 are designed to remove 3-10 μm particles).
- **Question:** What MERV# is optimal for ultrafine particle removal?

- We observed that hallways, foyers, and stairwells in some buildings contained cooking odors and tobacco and marijuana smoke.
- Question: Should common spaces have separate air handing systems and higher air turnover rates?

OPPORTUNITIES TO IMPROVE INDOOR AIR QUALITY

- 3. Occupant Behavior
 - c. Activities that influence pollutant emissions and exposure
 +d. Occupant education on ventilation systems and practices

Solutions:

- Replace gas ranges with electric ranges
- Vent range hood emissions outdoors
- Regularly replace in-home air filters
- Better educate residents on
 - how to take advantage of existing ventilation features e.g., HVAC system operation, range hood operation
 - Impacts of window opening on IAQ
 - Impacts of smoking on IAQ

ACKNOWLEDGEMENTS

Tufts University Tyler Tatro City of Somerville Christine Blais Russell Koty Ithzel Polanco-Cabadas Mike Feloney Kelly Elam Allied Consulting Mike Zimmerman Somerville Transportation Equity Partnership Kristen Strezo Wig Zamore Don Meglio Ellin Reisner US Dept. Housing and Urban Development J. Kofi Berko

school of Engineering Civil and Environmental Engineering

Boston University School of Social Work

<u>Funding sources:</u> The Healthy Homes Technical Studies Grant Program (MAHHU0044-18), U.S. Dept. of HUD; Department of Civil & Environmental Engineering, Tufts University

TRANSPORTATION EQUITY

PARTNERSHIP

PART II: QUESTIONS AND ANSWERS

48

PART III: INTERACTION (3 BREAKOUT GROUPS)

Solution I: Optimize location of building & air intake

Solution 2: Optimize filtration and ventilation

Solution 3: Increase resident awareness

Q1. What are the challenges and opportunities?

Q2. What kind of guidance document* would be most helpful to you in your practice of designing/maintaining/promoting better indoor air quality in residential buildings?

*see next slide

PART IV: THE GUIDANCE DOCUMENT

- We are in the process of developing a <u>guidance document</u> to promote improved IAQ in residential housing.
- If you would like to be part of the <u>review panel</u> for the document, then please leave us your email on the signup sheet on your breakout group table.

INDOOR PRESENCE OF TRAP

How does TRAP get indoors?

- Doors & Windows (Natural ventilation methods)
- Wind forces the outside air (which carries TRAP) through gaps into homes
- Outside air also gets pulled in more passively
- Mechanical ventilation systems that force outdoor air indoors also force what is in the outdoor air indoors

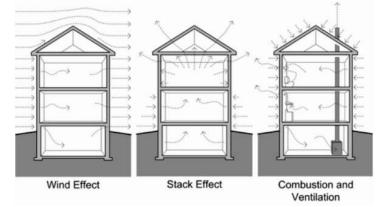


Figure 1: Examples of infiltration. Image courtesy: Building Science Corporation, www.buildingscience.com

How much TRAP get indoors?

- □ Varies by pollutant, especially the size of particulate matter pollution under consideration.
 - Indoor-to-outdoor (I/O) ratios can vary from zero to one, but 0.3-0.7 is common for particulate matter pollution.
- □ Also varies by:
 - Physical characteristics of the house; older leakier homes will have higher I/O ratios.
 - Ventilation practices
 - □ Natural ventilation will lead to 1/O of ~1
 - Mechanical ventilation can be very effective in lowering I/O if equipped with filters or can just force outdoor unfiltered polluted air indoors leading to I/O of ~I

INDOOR PRESENCE OF TRAP IN GREATER BOSTON AREA

In the following slides we look at data from two studies from the greater Boston area that demonstrate the indoor presence of TRAP

NEAR-HIGHWAY

- The first 0.25 mile is where we observe the most elevation in TRAP near major roadways
- About 3.5% of MA population lives within 1/10th of a mile of a majorhighway where concentrations can be elevated by up to an order of magnitude compared to urban background.

NEAR-AIRPORT

- The spatial proximity impacted by an airport is much larger in comparison to that impacted by a highway
- We have detected Loganrelated ultrafines in Winthrop, Chelsea, and as far as Roxbury, MA

In addition, conduct a minimum one-hour walkthrough of the home with the occupants. For buildings with building managers, include the building manager. The walkthrough must feature the following:

- identification of all installed equipment;
- instruction in how to use and operate the equipment; and
- information on its maintenance.