



October 2, 2019

Panel:

## Cost-Effective Transition to Electrified Heating & Cooling with Distributed Generation

NESEA's BuildingEnergyNYC 2019

# Today's Panelists



Michael Brusic, Technical Director, Bright Power



Jamin Bennett, Cofounder, Sunkeeper Solar



Abdulla Darrat, Senior VP, Omni New York, LLC



Larry Katz, Senior Associate, ICF



### Introduction

- Technology Overview and Use Case
- Case Studies
- Data Comparison
- Owner's Perspective
- Future Impacts of Policy



# NYC & NYS Climate Goals

- In 2014, NYC committed itself to reduce greenhouse gas emissions (GHG) 80% by 2050 (80 x 50)
- The interim target to reduce GHG emissions 40% by 2030 (40 x 30)
- NYC has been taking steps to achieve that goal with new investments in renewable energy, electric vehicles, and shifting away from fossil fuel-based energy sources.
- New York State's Clean Energy Standard was revised this year, requiring 100% carbon-free electricity by 2040. Last year, 29% of New York State's generation at both large- and small-scale facilities came from renewable sources.



## How Can We Achieve Our Climate Goals?

- Electric resistance heating + window or through-wall A/C
- Electric resistance PTAC
- Boiler/tower water source heat pump (not 100% electrified)
- Air-to-water heat pump
- Air-to-air heat pump (mini-split, VRF)
- Ground source heat pump (water-water, water-air)



# Variable Refrigerant Flow (VRFs)

- Typical refrigeration system / heat pump: fixed speed compressor, one outdoor coil, one indoor coil
- Mini-split: variable speed compressor, one outdoor coil, one indoor coil
- Multi-zone / VRV / VRF: variable speed compressor, one outdoor coil, many indoor coils









## VRFs Continued



### **VRFs** Continued



Wall Mounted



# Urban Solar PV Systems

- Pergolas, Canopies, Tilted Planes, Vertical Walls, Ballasted Systems
- Behind the Meter, Remote Net Metering, Community Solar
- Offset kWh's consumed onsite via crediting or traditional displacement
- NYSERDA Incentives, Federal ITC, NYC PTA, MACRS, LIHTC





### Examples of Urban Solar PV Projects



# Micro Cogeneration Systems

- Modular Reciprocating Engines, Modular Microturbines
- Traditionally located behind the meter with thermal tie-in at DHW and Heating System Loops
- Offset kwhs, DHW and Hydronic heating system therms
- Federal ITC, MACRS, LIHTC





# Future Technologies

- Energy Storage Systems (ESS) not considered here but will play an important role
- Smart thermostats / controls / IOT
- Time value of carbon





# The Data



# "Typical" New-ish NYC Multi-Family Building

- Roughly 10 years old
- Fairly high-percentage glazing, low-performance envelope
- Hydronic PTACs
- Some amenity spaces
- ~130,000 gross sqft
- 112 apartments
- 320 bedrooms



# "Typical" Building Usage







### Typical Multi-Family Building Owner Energy Metrics and Costs

| Energy               | 59     | kBtu/sqft/year     | \$1.38 | \$/sqft/year |
|----------------------|--------|--------------------|--------|--------------|
| <b>Total Owner</b>   |        |                    |        |              |
| Electric Baseload    | 3361   | kWh/unit/year      | \$0.55 | \$/sqft/year |
| Fossil Fuel Baseload | 4.34   | mmBtu/bedroom/year | \$0.13 | \$/sqft/year |
| Heating              | 7.1    | Btu/sqft/HDD       | \$0.37 | \$/sqft/year |
| Cooling              | 4.5    | Btu/sqft/CDD       | \$0.32 | \$/sqft/year |
| Energy End-Use       | Energy | Unit               | Cost   | Unit         |
|                      |        |                    |        |              |





# St. Augustine

- Roughly 1 year old
- High performance envelope
- VRF heating and cooling
- Some amenity spaces
- ~117,000 gross sqft
- 112 apartments
- 191 bedrooms
- 48 kW Solar PV system



#### Data: St. Augustine Owner Energy Metrics and Costs

| Energy End-Use                | Energy | Unit               | Cost   | Unit         |
|-------------------------------|--------|--------------------|--------|--------------|
| Cooling                       | 2.40   | Btu/sqft/CDD       | \$0.17 | \$/sqft/year |
| Heating                       | 1.58   | Btu/sqft/HDD       | \$0.39 | \$/sqft/year |
| Fossil Fuel Baseload          | 8.55   | mmBtu/bedroom/year | \$0.17 | \$/sqft/year |
| Electric Baseload (Net of PV) | 1,831  | kWh/unit/year      | \$0.33 | \$/sqft/year |
| <b>Total Owner Energy</b>     | 30     | kBtu/sqft/year     | \$1.06 | \$/sqft/year |





#### Park Avenue Green

#### **Improvements**

- Roughly 1 year old
- Passive House envelope
- VRF heating and cooling
- Some amenity spaces
- ~117,000 gross sqft
- 154 apartments
- 253 bedrooms
- 34 kW PV system
- 65 kW CHP system



### Data: Park Avenue Green Owner Energy Metrics and Costs

| Energy End-Use                     | Energy | Unit               | Cost     | Unit         |
|------------------------------------|--------|--------------------|----------|--------------|
| Cooling (VRF)*                     | -      | Btu/sqft/CDD       | -        | \$/sqft/year |
| Heating (VRF)*                     | -      | Btu/sqft/HDD       | -        | \$/sqft/year |
| Gas Heating (RTUs)                 | 0.59   | Btu/sqft/HDD       | \$0.03   | \$/sqft/year |
| Fossil Fuel Baseload (DWH Boilers) | 0.04   | mmBtu/bedroom/year | \$0.001  | \$/sqft/year |
| Electric Baseload (Net of CHP)     | 2,070  | kWh/unit/year      | \$0.64   | \$/sqft/year |
| CHP Gas                            | 17,641 | therms/year        | \$0.12   | \$/sqft/year |
| RNM Credits from PV System         | 41,582 | kWh/year           | (\$0.02) | \$/sqft/year |
| Total Owner Energy                 | 21     | kBtu/sqft/year     | \$0.78   | \$/sqft/year |

\*All data are shown net of CHP production. CHP modulates to maintain minimum net import which is why heating and cooling metrics show as zero in a regression analysis.



## Case Study Comparison

|                                                            | "TYPICAL<br>BUILDING" | St Augustine | Park Avenue Green |
|------------------------------------------------------------|-----------------------|--------------|-------------------|
| Fossil Fuel Baseload<br>(Includes CHP)                     | \$0.13                | \$0.17       | \$0.12            |
| Electric Baseload +<br>Seasonal Energy Cost<br>(Net of DG) | \$1.24                | \$0.89       | \$0.64            |
| Total Owner Energy                                         | \$1.38                | \$1.06       | \$0.78            |

Note: All Units in Table are \$/SqFt/Year



### Construction Cost Premiums

| Technology         | Cost Premium (\$/sqft) |
|--------------------|------------------------|
| VRF System Upgrade | 5.0                    |
| PV System          | .30                    |
| CHP System         | 1.8                    |
| Total              | 7.1                    |

Note: Cost Premium is calculated based off additional cost for the described technology above the typical NYC building cost.



### An Owner's Perspective

- Why VRFs?
- Why Cogen?
- Why PV?
- Goal : Passive House



# Future Impacts of Policy

- Incentives
- LL97
- Rate changes
- Cleaner grid
- Different grid loading (EVs, electrified heating)





Source: NYISO Powertrends 2019



#### LL97 Impacts on Case Study Buildings: St. Augustine

| 2024-2029 Period              |                   |              |       |
|-------------------------------|-------------------|--------------|-------|
| Energy End-Use                | Electricity (kWh) | Gas (therms) | tCO2e |
| Cooling                       | 106,224           | 0            | 31    |
| Heating                       | 239,269           | 0            | 69    |
| Fossil Fuel Baseload          | 0                 | 16,336       | 87    |
| Electric Baseload (Net of PV) | 205,050           | 0            | 59    |
| Total Owner Energy            | 550,542           | 16,336       | 246   |

| Emissions        | 0.00210 | tCO2e/sq ft |
|------------------|---------|-------------|
| Emission Limit   | 0.00675 | tCO2e/sq ft |
| Percent of Limit | 31%     |             |

| 2030-2034 Period              |                   |              |       |  |
|-------------------------------|-------------------|--------------|-------|--|
| Energy End-Use                | Electricity (kWh) | Gas (therms) | tCO2e |  |
| Cooling                       | 106,224           | 0            | 31    |  |
| Heating                       | 239,269           | 0            | 69    |  |
| Fossil Fuel Baseload          | 0                 | 16,336       | 87    |  |
| Electric Baseload (Net of PV) | 205,050           | 0            | 59    |  |
| Total Owner Energy            | 550,542           | 16,336       | 246   |  |

| Emissions        | 0.00210 | tCO2e/sq ft |
|------------------|---------|-------------|
| Emission Limit   | 0.00407 | tCO2e/sq ft |
| Percent of Limit | 52%     |             |



#### LL97 Impacts on Case Study Buildings: Park Avenue Green

| 2024-2029 Period               |                   |              |       |  |
|--------------------------------|-------------------|--------------|-------|--|
| Energy End-Use                 | Electricity (kWh) | Gas (therms) | tCO2e |  |
| Cooling (VRF)                  | 0                 | 0            | 0     |  |
| Heating (VRF)                  | 0                 | 0            | 0     |  |
| Gas Heating (RTUs)             | 0                 | 4,138        | 22    |  |
| Fossil Fuel Baseload           | 0                 | 95           | 1     |  |
| Electric Baseload (Net of CHP) | 318,800           | 0            | 92    |  |
| Generator Gas                  | 0                 | 17,641       | 94    |  |
| PV Generation                  | -41,582           | 0            | -12   |  |
| Total                          | 277,218           | 21,873       | 196   |  |

| Emissions        | 0.00123 | tCO2e/sq ft |
|------------------|---------|-------------|
| Emission Limit   | 0.00675 | tCO2e/sq ft |
| Percent of Limit | 18%     |             |



#### LL97 Impacts on Case Study Building: Park Avenue Green

| 2030-2034 Period - CHP is On   |                   |              |       |  |  |
|--------------------------------|-------------------|--------------|-------|--|--|
| Energy End-Use                 | Electricity (kWh) | Gas (therms) | tCO2e |  |  |
| Cooling (VRF)                  | 0                 | 0            | 0     |  |  |
| Heating (VRF)                  | 0                 | 0            | 0     |  |  |
| Gas Heating (RTUs)             | 0                 | 4,138        | 22    |  |  |
| Fossil Fuel Baseload           | 0                 | 95           | 1     |  |  |
| Electric Baseload (Net of CHP) | 318,800           | 0            | 39    |  |  |
| Generator Gas                  | 0                 | 17,641       | 94    |  |  |
| PV Generation                  | -41,582           | 0            | -5    |  |  |
| Total                          | 277,218           | 21,873       | 150   |  |  |

| Emissions        | 0.00094 | tCO2e/sq ft |
|------------------|---------|-------------|
| Emission Limit   | 0.00407 | tCO2e/sq ft |
| Percent of Limit | 23%     |             |

| Energy End-Use                 | Electricity (kWh) | Gas (therms) | tCO2e |
|--------------------------------|-------------------|--------------|-------|
| Cooling (VRF)                  | 0                 | 0            | 0     |
| Heating (VRF)                  | 0                 | 0            | 0     |
| Gas Heating (RTUs)             | 0                 | 4,138        | 22    |
| Fossil Fuel Baseload           | 0                 | 95           | 1     |
| Electric Baseload (Net of CHP) | 548,691           | 0            | 67    |
| Generator Gas                  | 0                 | 0            | 0     |
| PV Generation                  | -41,582           | 0            | -5    |
| Total                          | 507,109           | 4,232        | 84    |

| Emissions        | 0.00053 | tCO2e/sq ft |
|------------------|---------|-------------|
| Emission Limit   | 0.00407 | tCO2e/sq ft |
| Percent of Limit | 13%     |             |



### How Are Developers Viewing the Future

- Motivation for Complete Building Envelopes
- Deters Cogen and other bridging technologies
- Gas Moratorium



## Questions?

Michael Brusic, Technical Director
BRIGHT POWER



#### Larry Katz, Senior Associate



Abdulla Darrat, Senior VP



