Different Systems of Multifamily Passive House from Design to Operation

Steven Winter Associates, Inc.

Improving the Built Environment Since 1972

Lois B. Arena, PE Director, Passive House Services

Mark Ginsberg FAIA, LEEDAP Partner

Crystal Ng RA, LEED^{AP}, CPHC Associate

Justin Stein Vice President

CURTIS + GINSBERG

ARCHITECTS LLP

BuildingEnergy NYC | October 4, 2018

AIA Statement

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

Applicable solutions to multi-family passive house certified design for affordability through critical construction details, maintenance considerations, and building end use.

Learning Objectives

- Understand alternate building systems (Envelope, Heating/ Cooling and Ventilation) that result in compliant Passive House buildings.
- 2. Understand operational issues, including staff and resident education with Multifamily Passive House buildings.
- 3. Understand critical design issues including thermal breaks building height, shading associated with Multifamily Passive House projects.
- 4. Plan for key construction issues, including contractor training, testing requirements. that are inherent with Multifamily Passive House development.

Developer/Constructor

Background

PH Verifier and Consultant

Completed PH Projects: 13 In Construction: 5 In Design: 15

Architect

CURTIS + GINSBERG

ARCHITECTS LLP

Completed PH Projects: 6 In Construction: 1 In Design: 8

Why Passive House

BuildingEnergy NYC | October 4, 2018

Passive House Principles

Thermal Performance / Air Barrier and Sealing

Prefabricated Panels

Fabricated Stud Frame Wall panel offset with water vapor barrier installed with window

Insulated Concrete Form

Stay in place concrete form with integral straps for attachment

СМИ

Concrete masonry wall with rigid insulation

Thermal Performance

BuildingEnergy NYC | October 4, 2018

Air Barrier and Sealing

Air Barrier and Sealing

Air Barrier and Sealing

BEFORE PANEL SUPPORTS SEALED

AFTER PANEL SUPPORTS SEALED

Prefabricated Panels Pros and Cons

D Handel Architects LLP

Pros

- Speed of construction
- Quality control in the factory
- Can be extremely efficient and air tight

Cons

- Cost
- Coordination and design assistance needed very early on
- Logistics/shipping to site
- Ability to perform air leakage testing on site/sequencing
- Detailing at panel edges is crucial

ICF Thermal Performance

2 5/8" EPS each side + thermal mass of concrete for effective R-24.1 Additional insert at 2" increments up to R-48 ICF

Air Barrier and Sealing

Interlocking EPS form is Class 1 vapor barrier

Integral cast insulated jamb are cleanest tightest detail

Avoid Panel Joint at Opening, which allow water/air infiltration

- Min. Thermal bridge of Brick Angle
- Coordination of Min. Penetration Sleeve

Provide reinforcement at floor edge to prevent gaps

BuildingEnergy NYC | October 4, 2018

ICF Air Barrier and Sealing

Joint of ICF allow air pathway. Gyp bd finish adds to the air tightness

ICF Pros and Cons

Pros

- Reduces Trades/More done with one system
- Watertight Quickly
- Greater Design Flexibility
- Great Sound Isolation (OITC 41 to 65)
- Energy Efficiency System with high Rvalue and integrated air barrier

Cons

- Unfamiliar construction technology and limited sub contractor
- Implementation crucial to maintain vapor/air barrier continuity

CMU Backup

Thermal Performance

Structural Thermal Break at Individual ERV opening

Exterior continuous rigid insulation + Thermal mass of grouted masonry

BuildingEnergy NYC | October 4, 2018

CMU Backup Air Barrier and Sealing

CMU wall not as tight as Concrete wall

Possible solution to have spray foam on the interior

CMU Pros and Cons

Pros

• Ease and knowledge of construction method

Cons

- Need more diligence on air tightness
- May require more structural thermal break for façade elements

Thermal Bridging - Cladding

Stainless Steel Clips Thermal Efficiency 63% Steel Backup

74% CMU Backup

Fiberglass Clips Thermal Efficiency

64% for Steel Backup 79% for CMU backup *Thermal Stop Clips* Thermal Efficiency 67% for Steel Backup 80% for CMU Backup

Thermal Bridging – Shelf Angle

Typical Shelf Angle Thermal Efficiency

55% Steel Backup 67% CMU Backup Stand-off Angle

Thermal Efficiency 72% Steel Backup 81% CMU Backup Angle with 1" Thermal Break Thermal Efficiency 80% Steel Backup 86% CMU Backup

Thermal Bridging – Brick Ties

Galvanized Steel Brick Ties

Thermal Efficiency 75% Steel Backup 84% CMU Backup

Stainless Steel Brick Ties

Thermal Efficiency 87% Steel Backup 93% CMU Backup

Thermal Break Brick Ties

Thermal Efficiency 88% Steel Backup 94% CMU Backup

Evaluating Different Envelopes Windows

Thermally Broken Aluminum U-value:~.1 U-Frame: ~.211 Greatest Structural Capacity \$\$\$ Fiberglass U-value: ~.17 U-Frame: ~.2 \$\$ uPVC
U-value: ~.12
U-Frame:~.167
Reinforced with Steel
\$

Centralized One ERV ventilates several apartments

Decentralized Each unit has their own ERV

BuildingEnergy NYC | October 4, 2018

Performance

Centralized

Benefits

- Easier to precondition Supply Air Challenges
- Little to no control for individual apartment boast
- Balancing is more challenging

Decentralize

Benefits

- Boost flow more easily achievable in apartments
- Better heat recover efficiency, in general
- Better compartmentalization of apartments Challenges
- Preheater recommended in cold climates
- Conditioning supply air more difficult
- UL approved units not readily available

When we arrived, YOUR DUCTS HAD: 339.4 CFM of Leakage, equivalent to a 42.3 Square Inch Hole After we finished, YOUR DUCTS HAVE: 5 CFM of Leakage, equivalent to a 0.6 Square Inch Hole This corresponds to a 98.5% Reduction in Duct Leakage.

Centralized

Benefits

- Less horizontal duct > Less ceiling depth
- No exterior through wall penetration **Challenges**
- Loss of floor space for vertical shafts
- Large floor and roof penetrations
- Fire rated shafts & dampers needed
- Critical to seal duct
- Higher floor to floor at horizontal distribution floor requires coordination

Decentralized

Benefits

- No floor and roof penetrations
- Better apartment compartmentalization **Challenges**
- Sealing of 2 penetration per apartment
- Horizontal duct at every apartment required detail coordination and increase ceiling depth

Maintenance and Operation

Centralized

Benefits

- Fewer units to maintain
- ERV more accessible to maintenance **Challenges**
- Cost of ventilation on owner

Decentralize

Benefits

• Power for ERV on tenant panel

- Filters need to be replaced in every apartment every 3 months
- Requires access to exterior louvers for cleaning

Heating and Cooling

Source: Cool Automation

Air source Heat Pump (VRF)

Image: NYSERDA

Water/Geothermal Heat Pump

Hydronic Baseboard

Wall unit

Ducted Ceiling Units

Performance

- + Ventilation ductwork minimized
- + Heat recovery option allows for simultaneous heating and cooling

Design

- Extra piping required Wall Units
- + No additional ceiling space required
- Additional power for individual unit per room one unit per room
- No current units on market so such small loads

Ducted Units

- Requires additional ceiling space
- Required sealing of ducts

VRF

Maintenance Operation

- Refrigerant leaks = high green house gas emissions
- Cost
- Refrigerant types becoming obsolete with new policy
- Without heat recovery, occupants could be uncomfortable

Water Source Heat Pump

Geothermal can only be in suitable location with multiple wells

Performance

- + Very efficient when pared with geothermal
- Pumping energy for water loops

Design

- Flexibility in terminal units (floor units, ceiling mounted, vertical units in cabinets)
- Simultaneous heating-cooling option would require 4-pipe system

Ground Source Heat Pump

Maintenance Operation

- Potential for noise from compressor and fans
- Without 4-pipe system, occupants could be uncomfortable during swing seasons if cooling is desired

Hydronic Heating and Window AC

Performance

- + Boiler/radiator sizing better matched to load
- + Heat recovery option allows for simultaneous heating and cooling
- Pumping power for hydronic can be high
- Least efficient cooling option

Design

- + Less riser and ceiling space
- Need rigorous system to prevent air leakage through window A/C during winter months

Maintenance Operation

- + Cooling on tenant meter
- + Price of Gas
- + Occupants can turn on cooling whenever they want

Domestic Hot Water – Individual

Benefits

- On tenant meter
- If unit is down, only one apartment is affected
- Minimized piping losses

- loss of floor space
- Maintenance
- Gas options not viable due to venting issues
- Heat pump water heaters require large volume of air for proper operation
- Storage tank losses

Domestic Hot Water – Central / Recirc

Benefits

- No loss of floor space
- Can use gas boilers which are widely used & gas is inexpensive
- Potential to switch to heat pumps in the future

- Extensive energy losses in recirc lines
- Cost of plumbing lines
- Pumping power is very high (24/7 operation)
- On owner's meter

Domestic Hot Water – Semi-Central Per Floor

Benefits

- Reduced pumping power
- Can use gas boilers
- Potential to switch to HP in future
- Could utilize demand controlled to reduce recirc loop losses

- Loss of floor space
- On owner's meter

Plug Loads / Appliances

- Electric Stoves Required for to meet ventilation
- Dishwasher water saving vs electrical consumption
- Lighting common spaces

Renewables

Combined Heat and Power

- Provide emergency power
- Utilize Generated Heat for domestic hot wall
- Reduces demand of domestic hot water heater

<u>Solar</u>

- Provides supplemental power
- Required significant Battery for emergency power

Other Considerations

- Non residential spaces
- Commissioning
- Quality Control / Work crew
- User habits
- Operation

Results – Beach Green Dunes I

BuildingEnergy NYC | October 4, 2018

Results

© Passive House Institute US

BuildingEnergy NYC | October 4, 2018

BuildingEnergy NYC | October 4, 2018

Results Co-Gen Valve

Thank You!

