RTEM: Gaps & Solutions

Building Performance Lab CUNY Institute for Urban Systems

CIUS

Sponsorship

- An ambitious effort by NYSERDA to incentivize the buildings market to move towards advanced, information-enabled controls
- Broadly supported by NYC DEM to accelerate building efficiency through enhanced operations

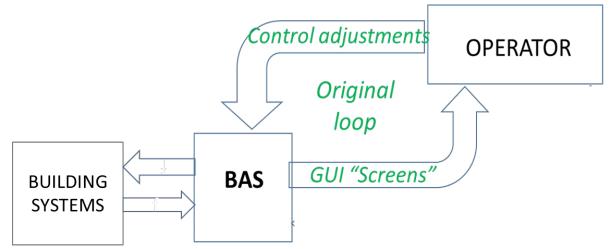
The Critical Questions

Thinking of upgrading your BAS?

The Critical Questions

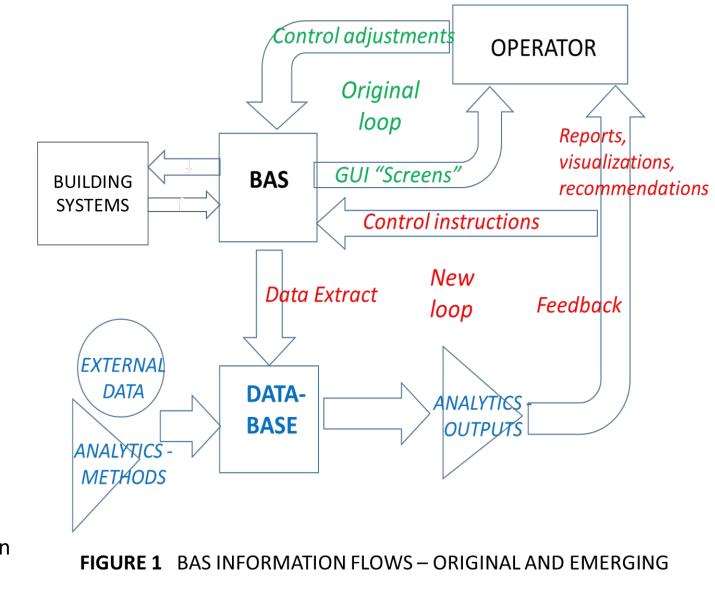
Thinking of upgrading your BAS?

• How do I make this decision?


The Critical Questions

Thinking of upgrading your BAS?

• How do I make this decision?


• What should I expect in the end?

The Vision – Emerging Capabilities

BAS: Building Automation System

The Vision – Emerging Capabilities

BAS: Building Automation System

Various "GAPS" inhibit market decisions

Various "GAPS" inhibit market decisions

• GAP-1: What can the existing BAS do? What upgrades are needed?

Various "GAPS" inhibit market decisions

- GAP-1: What can the existing BAS do? What upgrades are needed?
- GAP-2: What should the new application do? What should I expect from a vendor when they are all telling me slightly different stories?

Various "GAPS" inhibit market decisions

- GAP-1: What can the existing BAS do? What upgrades are needed?
- GAP-2: What should the new application do? What should I expect from a vendor when they are all telling me slightly different stories?
- GAP-3: What if I don't have a BAS to build on?

Addressing the GAPS

CUNY BPL does applied research with focus on:

- Energy efficiency in building operations
- Building Automation Systems and derived analytics, dashboards
- Operator decision-making

Research has led to solutions that address the RTEM GAPS

Gap-1/Solution-1 What Can My BAS Do?

Building Automation System Assessment Tool BASAT – the starting point

- Captures the building systems connected and their sensors
- BASAT assesses a BAS for the functionality it provides: can it support Building Re-tuning? Demand Response? Does it provide information needed for Local Law 87 retro-commissioning and energy audits?

BASAT – Input Example

pL BUILDING performance

BUILDING AUTOMATION SYSTEM ASSESSMENT TOOL

AIR HANDLER UNITS

Unit ID: AHU-1,2,3,4,5,6

BASAT

Generate Results

Reset Selections

🛆 Menu

Please indicate if the following points are available from the BAS or additional sensors/meters. Whe	en finished, click "generate results"
--	---------------------------------------

file:///Users/PaulReale/Download

TEMPERATURES		
Mixed Air Temperature	Yes	C No
Supply Air Temperature	Yes	C No
Supply Air Temperature Setpoint	Yes	C No
Exhaust Air Temperature	Yes	C No
Return Air Temperature	Yes	C No
Supply Air Relative Humidity	C Yes	

DAMPER POSITIONS		
Outside Air Damper Position	Yes	C No
Return Air Damper Position	Yes	C No
Exhaust Air Damper Position	Yes	C No

COILS / VALVES		
Chilled Water Coil Valve Position	Yes	ON
Chilled Water Coil Valve Position Setpoint	Yes	C No
Chilled Water Entering Temperature	C Yes	€ No
Chilled Water Leaving Temperature	C Yes	€ No
Heating Coil Valve Position	Yes	C No
Heating Coil Valve Position Setpoint	Yes	CNO
Re-Heat Coil Valve Position	C Yes	· No
Pre-Heat Coil Valve Position	C Yes	🖲 No
Re-Heat Entering Temperature	C Yes	• No
Re-Heat Leaving Temperature	C Yes	No
Pre-Heat Entering Temperature	C Yes	• No

BASAT – Output Example

BRT		Results apply to the following: AHU-1,2,3,4,5,6, CH-1,2,3, BLR-1,2,3	G	enerate Results Update Cooling Plant	Update AHU Update Heating Plant 🗅 Menu
o see the capability of the BAS to implem	ent and monit	tor BRT - related control strategies, click on "Generat	te Results"		Metasys/5.2.18.0400 BAS has 28 out of 33 BRT trends availab
Building & BAS:		TRENDS TO LOOK FOR:	Available?	Points needed:	Points to Trend:
UILDING:	AHU D	Is reset being used to control the discharge-air set point?	Yes		Supply Air Temperature; Supply Air Temperature Setpoint
	DISCHARGE	Is the discharge-air meeting set point, or do deviations occur?	Yes		Supply Air Temperature; Supply Air Temperature Setpoint
	AIR TEMP CC	Are set points too high or too low; discharge-air temperature too warm or too cold?	No	Terminal Unit Reheat Valve Position	
CONTROL SYSTEM: ohnson Controls	CONTROL	Do the discharge-air temperatures remain relatively stable?	Y Yes		Supply Air Temperature; Supply Air Temperature Setpoint

Gap-2/Solution-2

What Should the New Application Do?

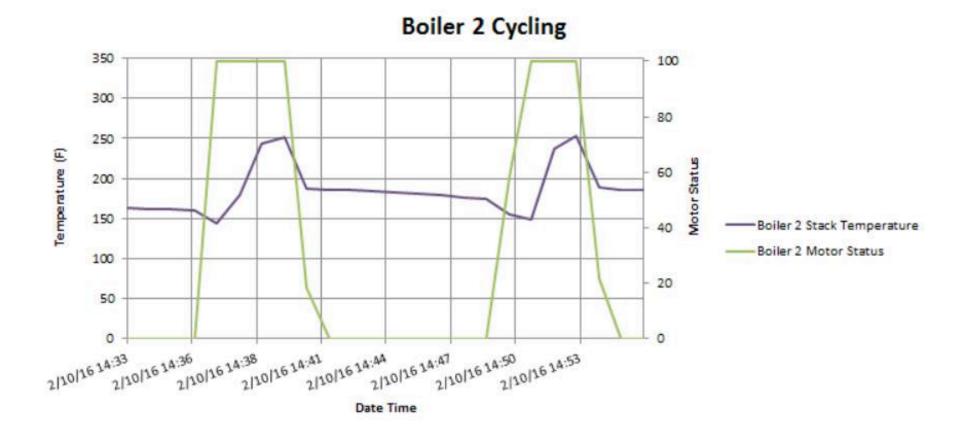
"Minimum Standard of Care" – MSOC

- What minimum functionality should an owner should expect from an updated BAS?
- Focus on the fundamentals to manage energy e.g. KPIs, data capacities, inter-operability, external data sources
- Potentially evolve to third-party labeling
- We want industry input! ...Focus group participants from vendors / integrators, etc.

Gap-3/Solution-3 What If I Don't Have a BAS?

Building Re-Tuning for buildings w/o a BAS: noBAS BRT

- A DEM-funded project to develop protocols to investigate building system performance
- A "kit-based" version of "Building Re-tuning"
- Includes a training component to teach the operators how to execute the process independently


noBAS BRT Example Installation

How is the boiler cycling, and what is the stack temperature?

noBAS BRT Example Output

Conclusion

- CUNY BPL is interested in your decision-process and is prepared to help as possible
- VERY interested in your thoughts about the MSOC concept building focus groups
- Able to help you and your staff with energy efficiency training