Break it, or Lose it: Thermal Bridging in Building Envelopes

NESEA BuildingEnergy 16

March 9, 2016

INTRODUCTION │ Learning Objectives

- 1. Learn the significance that thermal bridges can have on decreasing the design intended R-value in commercial building facades.
- 2. Will know common problems areas in the thermal performance of building envelopes which can be used to identify potential problems in future designs.
- 3. Learn a methodology for evaluating thermal bridges through thermal imaging that can be used to evaluate building during and after construction.
- 4. Will learn the limitations of current processes for evaluating heat flows through building envelopes and an easily applied simulation technique to correctly evaluate it.

INTRODUCTION │ Building's Environmental Impact

U.S. Energy Consumption by Sector

Source: @2010 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2009).

U.S. Electricity Consumption by Sector

Source: @2011 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source. U.S. Energy Information Administration (2011).

INTRODUCTION │ Architect's Influence on Energy Usage

70%

of commercial building's energy is impacted by the design of the envelope

INTRODUCTION │ Envelope's Impact on Energy

INTRODUCTION │ Heat Flow Basics

Modes of Heat Transfer:

- Conduction
- Convection
- Radiation

INTRODUCTION │ Heat Flow Basics

Heat flow through the building envelope (Q)

 $Q = A \times U \times \Delta T$ (in Btu/hr or W)

 $A = area of surface$ ∆T = difference in temperature between inside & out $U =$ heat transfer coefficient

INTRODUCTION │ Heat Flow Basics

• **R-value** – measure of thermal resistance - h·ft²· F/Btu or m²·°K/W

(bigger the better)

• **U-value** – heat transfer coefficient; measure of how well the building conducts heat - Btu/h-ft²·°F or W/m²·°K (smaller the better)

temperature difference heat transfer per unit area material width material conduct R $U = \frac{1}{R} = \frac{m \mu \epsilon \mu u}{r^2} =$ 1 material conduct.

INTRODUCTION │ Thermal Bridges

How we think about it in design:

1D Heat Flow

INTRODUCTION │ Thermal Bridges

How we think about it in design:

1D Heat Flow

How it is in reality:

2D & 3D Heat Flow

INTRODUCTION │ Historic Envelopes

Monadnock Building in Chicago, IL

INTRODUCTION │ Modern Envelopes

INTRODUCTION │ Modern Envelopes

INTRODUCTION │ Code Requirements

• Specify Minimum R-values

From ASHRAE 90.1-2007

TABLE 5.5-5 Building Envelope Requirements For Climate Zone 5 (A, B, C)*

Opaque Elements	Nonresidential		Residential		Semiheated	
	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value
Roofs						
Insulation Entirely above Deck	$U - 0.048$	R-20.0 c.i.	$U - 0.048$	R-20.0 c.i.	$U-0.119$	R-7.6 c.i.
Metal Building	$U - 0.065$	$R-19.0$	$U - 0.065$	$R-19.0$	$U-0.097$	$R-10.0$
Attic and Other	$U-0.027$	$R-38.0$	$U-0.027$	$R - 38.0$	$U - 0.053$	$R-19.0$
Walls, Above-Grade						
Mass	$U-0.090$	R-11.4 c.i.	$U - 0.080$	R-13.3 c.i.	$U-0.151^a$	$R-5.7$ c.i. ^a
Metal Building	$U-0.113$	$R-13.0$	$U - 0.057$	$R-13.0 + R-13.0$	$U-0.123$	$R-11.0$
Steel-Framed	$U - 0.064$	$R - 13.0 + R - 7.5$ c.i.	$U - 0.064$	$R-13.0 + R-7.5$ c.i.	$U - 0.124$	$R-13.0$
Wood-Framed and Other	$U - 0.064$	$R-13.0 + R-3.8$ c.i. i	$U-0.051$	$R-13.0 + R-7.5$ c.i.	$U - 0.089$	$R-13.0$
Walls, Below-Grade						
Below-Grade Wall	$C-0.119$	$R-7.5$ c.i.	$C-0.119$	$R-7.5$ c.i.	$C-1.140$	NR
Floors						
Mass	$U - 0.074$	$R-10.4$ c.i.	$U - 0.064$	R-12.5 c.i.	$U-0.137$	$R-4.2$ c.i.
Steel-Joist	$U - 0.038$	$R - 30.0$	$U-0.038$	$R - 30.0$	$U-0.052$	$R-19.0$
Wood-Framed and Other	$U-0.033$	$R - 30.0$	$U - 0.033$	$R - 30.0$	$U - 0.051$	$R-19.0$

INTRODUCTION │ Code Requirements

• **Continuous insulation** – insulation that is continuous across all structural members without thermal bridges other than fasteners and service openings.

INTRODUCTION │ Code Requirements

- **Continuous insulation** insulation that is continuous across all structural members without thermal bridges other than fasteners and service openings.
- Structural Members IE studs, Z-girts, clips
- Fasteners IE screws & nails

How many facades meet these requirements?

HYPOTHESIS | Survey

What is the impact on the R-value of thermal bridges in commercial assemblies?

Perceived Reduction in R-value from Thermal Bridges

HYPOTHESIS | Existing Literature

What is the impact on the R-value of thermal bridges in commercial assemblies?

• Very little literature exists, but those that do suggest they can have a significant impact

HYPOTHESIS │ Decrease in R-value's Impact on Energy

Energy Model Based on DOE Benchmark Model for Large Office Building Updated to High Performance Building (ASHRAE 90.1-2010)

HYPOTHESIS │ Hypothesis

Thermal bridges have a big impact on the thermal performance of our facades. Changing how we design our envelope will have a biggest impact in improving their thermal performance.

- Quantify how walls are really performing and understand the impact of thermal bridges
- Identify if any observed decreases in thermal performance is resultant from design decisions or construction practices
- Identify good (and bad) design details for thermal performance

RESEARCH PROCESS │ Baseline R-Value

• Manual calculation based on design - Doesn't account for thermal bridges and is viewed as "best case scenario"

 R -value = 14.82

RESEARCH PROCESS │ Observed Performance

- Use thermal imaging camera to document actual performance in 15 buildings
- Creates color infrared image of surface temperature

RESEARCH PROCESS │ Observed Performance

- Calculate R-value from thermal images
- Calculation based on difference between wall surface and inside air temperature, inside surface and radiant temperature, and inside surface and exterior temperature.
- Need to also find out:
	- Outside Air Temperature
	- Inside Air Temperature
	- Inside Radiant Temperature

RESEARCH PROCESS | Limitation of Thermal Image

- R-value only of designated area
- Calculated only from interior
- Doesn't work on glass because it is a specular reflector
- Can only take images in winter (in the northeast) when there is a larger temperature difference between interior & exterior

- Use THERM 2D heat flow simulation program to match model with image to better understand what is causing decrease in R-value
- Validated model allows for testing of alternative designs
- Provides results of U-value along specified surface, surface temperatures and images of temperature gradient through model

How to make a 2D program simulate a 3D world:

Measured **Parallel Path Isothermal Planes** Averaged $\rm ^{\circ}C$ $\rm ^{\circ}C$ % Different $\rm ^{\circ}C$ % Different $\rm ^{\circ}C$ % Different Nylon, 229mm 12.4 11.5 $-7.3%$ 11.5 $-7.3%$ 11.5 $-7.3%$ Stainless, 457mm 11.0 10.5 -0.9% 11.3 $+2.7%$ -4.5% 10.9 Stainless, 305mm 10.8 $+3.7%$ 10.1 -6.5% 10.7 -0.9% 11.2 Stainless, 229mm 10.7 9.8 11.1 $+3.7%$ -8.4% 10.5 -1.9% Stainless, 152mm 10.5 10.9 $+3.8%$ 9.2 $-12.4%$ 10.1 $-3.8%$ Stainless, 76mm 9.4 7.9 -3.2% 10.3 $+9.6%$ -16.0% 9.1 Steel, 229mm $+26.1%$ 7.7 $+6.8%$ 8.8 11.1 $-12.5%$ 9.4 $\pm 8.1\%$ $± 3.5%$ -9.7% Average

Table 22: Average Surface Temperature Results Comparision (Griffith 1997)

Parallel Path Method

– Weighted average of 2 simulations

 $U_P = F_B * U_B + F_N * U_N$

Whereas, $U_P = U$ -value parallel path

 F_B = Fraction of bridging element

 $U_B = U$ -value from THERM with bridging element

 F_N = Fraction of clear wall

 $U_N = U$ -value from THERM of clear wall

Isothermal Planes Method

– 1 simulation with a weighted average of the conductivities

 $k_{\text{eff}} = F_B * k_B + F_N * k_N$

Whereas, $U_I = U$ -value from THERM using isothermal planes method

 k_B = effective conductivity

 k_B = conductivity of bridging element

 k_N = conductivity of non-bridging element
RESEARCH PROCESS │ Identified Commonalities

- Identified 16 common areas for further investigation
- Cladding Support Systems
	- Existing building façade renovations
	- Masonry wall systems
	- Metal panel wall systems
	- Curtain wall systems
	- Rain screens wall systems

RESEARCH PROCESS │ Identified Commonalities

- Identified 16 common areas for further investigation
- Transitions and Penetrations
	- Transitions between new and existing facades
	- Transitions between different wall systems
	- Transition between windows and walls
	- Foundation to wall transitions
	- Roof to wall transitions
	- Roof parapets
	- Soffits
	- Roof penetrations
	- Seismic & movement joints
	- Louver openings

Building 1- studs directly attached to existing wall resulting in a decrease of 59% of baseline R-value

Building 1- studs directly attached to existing wall resulting in a decrease of 59% of baseline R-value

Building 2- studs pulled 1" back from existing wall results in a decrease of 16% of baseline R-value

Building 2- studs pulled 1" back from existing wall results in a decrease of 16% of baseline R-value

Building 3- studs separated from insulation resulted in a decrease of 2% of baseline R-value

Building 3- studs separated from insulation resulted in a decrease of 2% of baseline R-value

- Main areas of thermal bridging:
	- Brick ties (one every 2.67 square feet)
	- Shelf angle

CMU Back Up Wall with 2" Rigid Insulation

Stud Back Up Wall with 2" Rigid Insulation

Stud Back Up Wall with 3" Mineral Wool insulation

$$
\mathsf{R}\text{-6.5}
$$

Screw On (S) Posities Barrel (B)

Eye and Pintle

Thermal Brick Tie (T)

R-16.0

Discontinuous Galvanized Shelf Angle Discontinuous Stainless Steel Shelf Angle

Traditional Masonry Wall with Galvanized Barrel Ties and a Continuous Galvanized Shelf Angle

Improved Masonry Wall with Stainless Steel Screw Ties and a Discontinuous Stainless Steel Shelf Angle

Horizontal Z-Girt Supports

Clip Supports

Vertical Z-Girt Supports

Examples of existing thermally broken products on the market

R-16.8

Examples of existing thermally broken products on the market

R-21.4

Examples of existing thermally broken products on the market

RESEARCH FINDINGS | Curtain Walls

RESEARCH FINDINGS │ Curtain Walls

Baseline R-Value: 20.4 Observed R-Value: 5.8

Baseline R-Value: 20.4 Simulated R-Value: 6.2

RESEARCH FINDINGS │ Curtain Walls

Baseline R-Value: 14.2 Observed R-Value: 6.2

RESEARCH FINDINGS | Curtain Walls

Wrapped Mullion
RESEARCH FINDINGS | Curtain Walls

RESEARCH FINDINGS | Curtain Walls

RESEARCH FINDINGS │ Curtain Walls

Glazed in Spandrel Panel

Baseline R-Value: 10.6

RESEARCH FINDINGS │ Curtain Walls

Glazed in Spandrel Panel

Baseline R-Value: 10.6 Simulated R-Value: 8.1

RESEARCH FINDINGS │ Curtain Walls

z.

Glazed in Spandrel Panel

Baseline R-Value: 21.2 Simulated R-Value: 15.1

Uninsulated Panel with Back Up Insulation

2" Insulated Panel 3" Insulated Panel

R-6.0 C ■ *N* **9[%] a**) **R-18.7 C** ■ 3⁹% a) R-6.8

Uninsulated Panel with Back Up Insulation

2" Insulated Panel 3" Insulated Panel

RESEARCH FINDINGS | Window Openings

Inline Recessed Proud

RESEARCH FINDINGS │ Window Openings – Thermal Barrier

Aligned Recessed Proud

RESEARCH FINDINGS │ Window Openings – Flanking Loss

Aligned Recessed Proud

RESEARCH FINDINGS │ Window Openings – Structural Support

Aligned Recessed Proud

RESEARCH FINDINGS │ Window Openings – Structural Support

RESEARCH FINDINGS │ Window Openings – Inline Relationship

Window Head Window Sill Window Jamb

Baseline R-Value: 13.86

RESEARCH FINDINGS | Window Openings – Inline Relationship

Window Jamb Window Jamb

R-7.50

RESEARCH FINDINGS | Window Openings – Inline Relationship

Window Head Window Sill Window Jamb

RESEARCH FINDINGS │ Window Openings – Recessed Relationship

Window Head Window Sill Window Jamb

Baseline R-Value: 15.39

RESEARCH FINDINGS | Window Openings – Recessed Relationship

Window Jamb Window Jamb

R-6.58

RESEARCH FINDINGS | Window Openings – Recessed Relationship

RESEARCH FINDINGS │ Window Openings – Proud Relationship

Window Head Window Sill Window Jamb

Calculated Clear Wall R-Value: 18.78

RESEARCH FINDINGS │ Window Openings – Proud Relationship

Window Sill Window Sill

RESEARCH FINDINGS │ Window Openings – Proud Relationship

RESEARCH FINDINGS │ Window Openings – Aligned

Window Jamb Window Jamb

Baseline R-Value: 20.93

Exterior Insulation Interior Insulation Exterior Insulation

Simulated R-Value: 8.39

Baseline R-Value: 14.01

Simulated R-Value: 6.1

Baseline R-Value: 13.74

As-Built Condition

Simulated R-Value: 4.10

Baseline R-Value: 13.38

Simulated R-Value: 8.59

Thermally Improved Option B

Simulated R-Value: 9.82

Baseline R-Value: 13.38

RESEARCH FINDINGS | Roof Parapets

RESEARCH FINDINGS | Parapets

R-15.33 Insulating beneath parapet

R-13.42 Insulating around 1'-3" tall parapet

R-12.25 Insulating around 2'-6" tall parapet

R-11.27 Insulating around 5'-0" tall parapet

as the height increases, the R-value decreases

RESEARCH FINDINGS | Parapets

As-Built Condition

Simulated R-Value: 8.57

Baseline R-Value: 22.34

RESEARCH FINDINGS | Parapets

Thermally Improved Condition

Simulated R-Value: 10.65

Baseline R-Value: 22.34

CONCLUSION │ Full Report

• Report available on Payette's website

> Projects Research @ Payette Thermal Performance of Façades

Final Report | May 2014

CONCLUSION │ Observations

- Thermal bridges are significantly decreasing the thermal performance of our building envelopes
- There are numerous thermal bridges all over our buildings
- Careful detailing and attention to the issue can improve their performance
- More awareness and education is needed on the sources of thermal bridges in our details
- We should shift the dialog from the R-value of insulation to the performance as R-value of assembly
- CONTINUITY of insulation barrier key to good thermal performance

Questions?

INTERACTIVE WORKSHOP │ Finding Solutions to Thermal Bridges

- Break into Groups (20 Minutes)
	- Review your typical building envelope detail
	- Identify the thermal break(s)
	- **Develop** your own solution(s)
- Share you Findings and Proposed Solutions (10 Minutes)

- 1) Transitions Between Systems
- 2) Soffits
- 3) Roof to Wall Transitions
- 4) Roof Penetrations / Seismic Joints
- 5) Louvers
- 6) Exist. Bldg. Slab & Beam Conx.