BUILDINGENERGY BOSTON

Resilience and Sustainable Design for Laboratories: Harvard Case Study

Erik Hegre (Behnisch Architekten) David Madigan (vanZelm Engineers)

Curated by Megan Nedzinski (Vermont Integrated Architecture)

Northeast Sustainable Energy Association (NESEA) | March 19, 2024

Case Study Topics:

Resilience Planning

Water Story

Sustainability and Performance

Project History

- Began in early 2000's as a Biotechnology Research Center
- Design Completed & Construction began for a 4 Building Complex, roughly 1,000,000 SF
- Project halted after 400,000 SF below-grade Shell Constructed
- 2012 Programming began for a New World-Class Facility to house the School of Engineering and Applied Science.

Project Charter

Providing Uncompromised, High Performance Research & Learning Spaces

Beyond State-of-the-Art Laboratory Efficiency

Optimize ventilation strategies Establish long-term sustainable operation plans, including staffing

Healthiest Building at Harvard

Minimize material use and reduce chemicals of concern Provide access to outdoors to bring daylight and nature into building

Unparalleled User Comfort and Controllability

Increase user control over natural ventilation and daylight Provide holistic thermal comfort with minimal noise

"Wearing it On Your Sleeve"

Interactive user experience Sustainable living lab: extensive metering/feedback mechanisms

Designed to Last

Robust and resilient design

- 1 Fixed Shading
- 2 Atrium
- 3 View
- 4 Hoods or benches
- 5 ACH Dial
- 6 Support Spaces
- 7 Lab Benches
- 8 Transfer Air
- 9 Natural Ventilation

10 - Light redirection at north facade

- 11 View
- 12 Operable windows at lab offices
- 13 Air change rate (low, med, high)
- 14 Emergency (max)

- 1 Sunlight
- 2 Green roof terrace
- 3 Operable windows
- 4 View
- 5 Fixed solar shading/ lightshelf
- 6 Radiant Ceiling
- 7 Transfer Air
- 8 Open window indicator light
- 9-View
- 10 Atrium

TABLE OF CONTENTS

Overview 7 **Climate Change Factors** 9 10 TEMPERATURE AND PRECIPITATION STORM SURGE FLOODING 12 14 LOCAL SEA LEVEL RISE 16 BOSTON HARBOR / ALLSTON SCIENCE SECTION Climate Change Preparedness 19 20 FLOODPROOFING TYPOLOGIES 21 MATERIAL CLASSIFICATIONS 22 FLOODPROOFING APPROACHES AT ALLSTON SCIENCE 26 ROBUST CLIMATE CHANGE PREPAREDNESS STRATEGIES 35 RESILIENT CLIMATE CHANGE PREPAREDNESS STRATEGIES Strategy Matrix 40

BEHNISCH ARCHITEKTEN

Designing for Resilience

Threats

External Internal

Assets

Human Property Intellectual

Criteria / Outcome

Survive Recover Scenario Planning

Design

Passive Active

PERVIOUS AND IMPERVIOUS SURFACES IN ALLSTON¹

RELATIONSHIP BETWEEN CO₂ AND TEMPERATURE CHANGE IN NEW ENGLAND²

 Gravelin, J., Newman, J., Sheehan, T., Slaughter, S., Springer, M., Wilson, A., (2013) "Building Resilience in Boston: "Best Practices" for Climate Change Adaptation and Resilience for Existing Buildings," Green Ribbon Commission, page 25, Retrieved from http://www. greenribboncommission.org/downloads/Building_Resilience_in_Boston

2. Commonwealth of Massachusetts, Executive Office of Energy and Environmental Affairs and the Adaptation Advisory Committee (2011). Massachusetts Climate Change Adaption Report , page 12

ROBUST CLIMATE CHANGE PREPAREDNESS STRATEGIES

RESILIENT CLIMATE CHANGE PREPAREDNESS STRATEGIES

Before

After

RESILIENCY	PUMPING	ZONES
------------	---------	-------

ZONE	LOCATION	APROXIMATE AREA (SF)	PUMP	
1	MECHANICAL ROOM	32,500	RP-1	
2	UNDER LOADING DOCK	10,000	RP-2	
3	FUTURE GARAGE	40,700	RP-3	
4	SOUTH BASEMENT	66,000	8P-4	
5	EAST BASEMENT	6,800	RP-5	
6	WEST BASEMENT	20,500	RP-6	

	Area at Mat % of		Volume (cf)- based on water depth (ft)				Gallons at each depth			GPM to Pump out in 24 hours				GPM to pump out in 48 hours				
Area	ea Slab tot	total	0.5	1	3	5	0.5	1	3	5	0.5	1	3	5	0.5	1	3	5
1	6,500																	
2	26,000	18%	16,250	32,500	97,500	162,500	121,550	243,100	729,300	1,215,500	84.41	168.82	506.46	844.10	42.20	84.41	253.23	422.05
3	20,500	12%	10,250	20,500	61,500	102,500	76,670	153,340	460,020	766,700	53.24	106.49	319.46	532.43	26.62	53.24	159.73	266.22
4	40,700	23%	20,350	40,700	122,100	203,500	152,218	304,436	913,308	1,522,180	105.71	211.41	634.24	1,057.07	52.85	105.71	317.12	528.53
5	66,000	37%	33,000	66,000	198,000	330,000	246,840	493,680	1,481,040	2,468,400	171.42	342.83	1,028.50	1,714.17	85.71	171.42	514.25	857.08
6	10,000	6%	5,000	10,000	30,000	50,000	37,400	74,800	224,400	374,000	25.97	51.94	155.83	259.72	12.99	25.97	77.92	129.86
7	6,800	4%	3,400	6,800	20,400	34,000	25,432	50,864	152,592	254,320	17.66	35.32	105.97	176.61	8.83	17.66	52.98	88.31
TOTAL	176,500		88,250	176,500	529,500	882,500	660,110	1,320,220	3,960,660	6,601,100	458	917	2,750	4,584	229	458	1,375	2,292
Entire	252,000		126,000	252,000	756,000	1,260,000	942,480	1,884,960	5,654,880	9,424,800	655	1,309	3,927	6,545	327	655	1,964	3,273

73% Toilet Flushing from Rainwater Collection

Sources of Water from the Building - Phase 1 and Full Build Out

Uses of Water - Phase 1 and Full Build Out

trigation Required LEEO Outdoor Credit

11111/1/1 111

100-yr Flood Design Protection

100% Storm-water Managed On-site

78,000 Gallon Water Collection System

RAIN WATER RECLAIM DISTRIBUTION RISER

Systems Design Process

Architectural Energy Conservation Double Glazing vs Triple Glazing

\$45k Yearly Savings vs. Double-Glazed

65 Metric Tons of CO²e Reduction Yearly

DIFFERENTIAL CONFIGURATIONS PER ORIENTATION

VIEW

14 Shade Profiles
12k Individual Shades
1.5 mm-thick Stainless Steel

Energy Conservation Techniques

- Minimize ventilation rates
- Dedicated outside air system
- Hydronic heating / sensible cooling
- Natural ventilation / air cascade
- Controlled lighting / daylighting
- Heat recovery

Minimize Ventilation Rates

- Work closely with EH&S
- Define present / future fume hood density
- Evaluate applicable Codes / Standards
- Define peak / normal / unoccupied air change rates
- Define sensible / latent heat removal capacity by space
- Evaluate active environmental sensing
- Through risk assessment and development of Lab Ventilation Management Plan (LVMP)

Achieving Reduced Laboratory Airflows

"Performance-Based Ventilation Rate Determination"

GOAL = Equal or Greater safety at reduced airflows

- Dedicated Outside Air Systems / Hydronic Cooling
- Risk Assessments
- Low Flow Hoods (ASHRAE 110-compliant)
- Design for High Ventilation Effectiveness
- Use Local Capture Devices wherever Possible
- CFD airflow analsys

Building Airflow Concept

Mechanical Ventilation Air Cascade

Building Airflow Concept

Natural Ventilation Air Cascade

Overview of Air Systems

- 1 Natural ventilation
- 2 Daylight
- 3 Daylight redirection at Screen Facade
- 4 Operable windows at laboratory write-up
- 5 Laboratory spaces
- 6 Fresh air intake
- 7 Mechanical room
- 8 Atrium air return wall
- 9 Radiant ceilings
- 10 Supply air
- 11 Radiant chill beams
- 12 Energy recovery
- 13 Laboratory exhaust air

50% Regularly occupied spaces can be naturally ventilated

100% Dedicated outdoor air ventilation with air cascade

Sensible Only Cooling Systems – Design Approach

Sensible Only Cooling Systems

Hydronic (radiant) Heating/Cooling System

Classroom Radiant Ceilings

Atrium and Public Spaces Radiant Composite Concrete Floors

Hydronic (radiant) Heating/Cooling System

Imaging Suite Radiant Panels

Office Radiant Panels

Heat Recovery System IDEC / Konvekta

90% Heat Recovery Efficiency

<\$200k Per Metric Ton CO²e Reduction

300 Metric Tons of CO²e Reduction Yearly

Protected Bike and Walking Paths connect Allston neighborhood to Greater Boston Parks Harvard Arboretum Tree Nursery

Public Green

12 MONTH ROLLING EUI

OCTOBER 2023

- 1,700 ILFI Red List & Harvard HBA Compliant Materials
 - 57 EPDs Collected
 - 127 Third Party Certified Materials
- **1,200+** Companies disclosed product ingredients
- 6,000+ Materials Evaluated, creating safer global supply chains

Light Level Study

Circadian Lighting Spectrum

Artificial lighting level studies were conducted on all occupied spaces. The building lighting is equipped with circadian lighting and daylight responsive controls.

Thermostats were modified to improve user controls and indicate when conditions are ideal to open windows, or when windows should be closed, optimizing thermal efficiency and natural ventilation.

Design team and contractor site visit to observe reclaimed oak raw material and processing

100% FSC Certified Wood

- 30+ Salvaged Materials Incorporated into Building
- 93% Construction Waste Diverted from Landfills

Reclaimed Oak Floors, Benches, and Air Intake Diffuser Walls

2023 AIA COTE® Top Ten Award

2023 Vitruvian Award (Façade Tectonics Institute),Outstanding Façade Integration

2022 i2SL Overall Lab Buildings and Projects Award

2022 FSC Leadership Awards Winners Advance Responsible Forest Management

2022 The Chicago Athenaeum, American Architecture Award 2022 The Chicago Athenaeum, Green Good Design Award 2021 ENR (Engineering New Report) Best Project in the Education and Research

2021 AN Best of Design Award, Green Building, winner

2021 Built Environment Plus Award: Green Building of the Year 2021

2021 AIA New England Awards: Honor Award for Design Excellence 2021 SEFA Lab of the Year

2021 Prix Versailles, University Campuses, World Special Prize for an Exterior

2021 ABB Leaf Award, Best Façade Design & Engineering Project

2021 WAN Award, category: Education, shortlist

2021 WAN Award, Best Overall Sustainable Project

2018 R+D Awards Honorable Mention: Hydroformed Shading

Thank you!

- Reduced ventilation rates in laboratories (4 ach occupied/2 ach occupied vs. 6/4 ach)
- Building orientation with major facades facing north/south
- Above-grade atriums allowing daylight penetration into floorplate
- Below-grade courtyards allowing daylight penetration into floorplate
- Internal program/partitioning (glass partitions) for daylight penetration into floorplate
- Write-up space portioned from laboratories, reducing overall ventilation quantity
- Air cascade: non-lab ventilation provides make-up air to laboratory AHUs
- High-performance runaround heat recovery
- Indirect evaporative cooling (via runaround heat recovery)
- Optimized Fixed exterior shading for solar control

- High-performance glazing: reduced SHGC, two low-e coatings for reduced Uvalue, well-insulated frame
- Natural ventilation in all non-laboratory spaces
- Dedicated outside air ventilation in all spaces, with local heating/cooling
- Radiant cooling/heating in many spaces using low-energy heating/cooling sources
- Reduced duct velocities for reduced fan static pressure
- Increased laboratory exhaust stack height for reduced exhaust velocity
- Wind-responsive laboratory exhaust velocity control
- Demand-controlled ventilation (CO2) in all densely occupied spaces
- Displacement ventilation in all densely occupied spaces
- Low-flow fume hoods

- Relaxed temperature criteria for atrium spaces
- Reduced winter relative humidity
- Exposed thermal mass in lower portions of building (concrete)
- Daylight-responsive lighting controls
- Reduced lighting power density (LED lighting)
- Ceiling fans to allow comfort at higher temperatures
- Green roof (podium)
- Reflective roof (upper roof)
- Premium electric motors
- Reduced exterior light power (LED lighting)
- Temperature setback and optimized warm-up
- Low pressure drop AHUs (including coil bypass)

- Refrigeration heat recovery for domestic hot water
- Demand-controlled hot water recirculation
- High-efficiency/harmonic suppression transformers
- High-efficiency controlled environmental rooms
- Machine-room-less elevators
- Atriums encourage use of stairs
- Extensive electrical and thermal submetering