

Transitioning to Electrification-Ready: The 3% Solution and Heat Pump Optimization

Duct Distribution Efficiency

Real Savings from Sealing Ducts - McKinsey

and associate	ictory-	Delivered Ef	ficiency wi	th Unsealed	d Ducts
 Interview and the second se 	signed iciency	2% or Less (SEALED)	10% Leakage	20% Leakage	30% Leakage
्रष्ट	24 SEER	23.3	20.3	16.6	12.9
E S	22 SEER	21.3	18.6	15.2	11.9
eat F	20 SEER	19.4	16.9	13.9	10.8
Η̈́P	18 SEER	17.5	15.2	12.5	9.7
A/C and Heat Pumps	16 SEER	15.5	13.5	11.1	8.6
N N	14 SEER	13.6	11.9	9.7	7.6
S S S	95% AFUE	93	85	76	67
Furnaces	90% AFUE	88	81	72	63
Ē	80% AFUE	78	72	64	56

McKinsey: Energy Efficiency Potential

Greater Impact for Heat Pumps

Remove
 Furnace, Add
 Heat Pump

Duct efficiency goes down significantly

Duct Efficiency Results – Supply Losses

	N. Bend	Portland	Medford	Boise	Spokane	Missoula
Loss Component		An	nual Duct I	Efficiency	(%)	
Supply – furnace					\cap	
20% leak	77.2	78.2	75.9	76.3	76.3	75.8
10% leak	88.7	88.3	88.0	88.2	88.2	88.0
R-1.5 ducts	86.7	86.3	85.9	86.3	86.2	85.8
R-4 ducts	94.8	94.6	94.4	94.5	94.5	94.4
R-8 ducts	97.3	97.2	97.2	97.2	97.2	97.1
Supply – heat pump					\mathbf{X}	
20% leak	72.0	67.9	64.1	59.6	58.9	57.7
10% leak	86.4	<mark>84.5</mark>	82.5	78.7	78.3	77.0
R-1.5 ducts	83.6	81.5	79.4	75.0	74.6	73.1
R-4 ducts	93.3	92.2	91.4	89.6	88.9	87.9
R-8 ducts	96.6	96.0	95.9	94.6	94.6	94.0

INDOOR CLIMATE RESEARCH AND TRAINING

Impact of Duct Leakage

Heat pump

• 1200 CFM for 36,000 BTU

Gas furnace

• 1200 CFM for 72,000 BTU

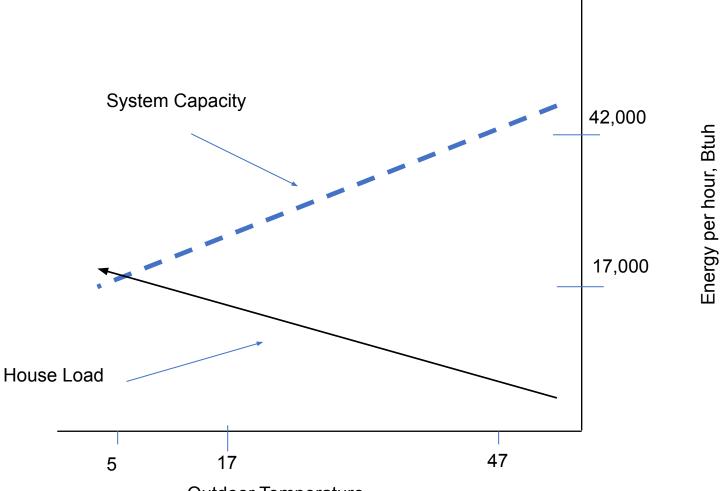
Leaks increase HVAC load for house

Increase load will increase resistance heat

Heat Pump Performance

ENERGY.GOV					Newsroom	Careers	Energy.gov Offices	National Labs	Q Search Energy.gov
()	ENERGY SAVER	ABOUT US	RESOURCES	HOME COMFORT	WATER	EFFICIENT	DESIGN RENEW	VABLES & ELECTR	CICITY TRANSPORTATION

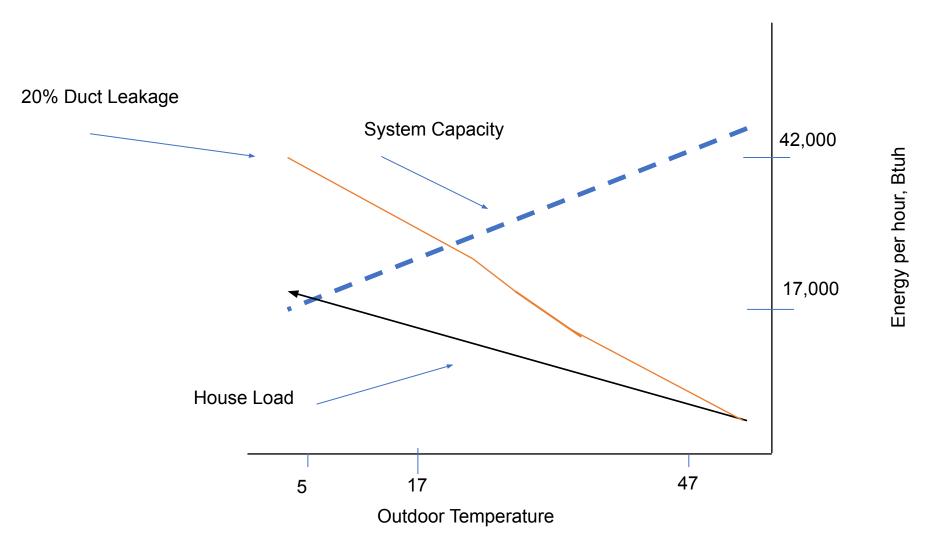
HOME COMFORT


V

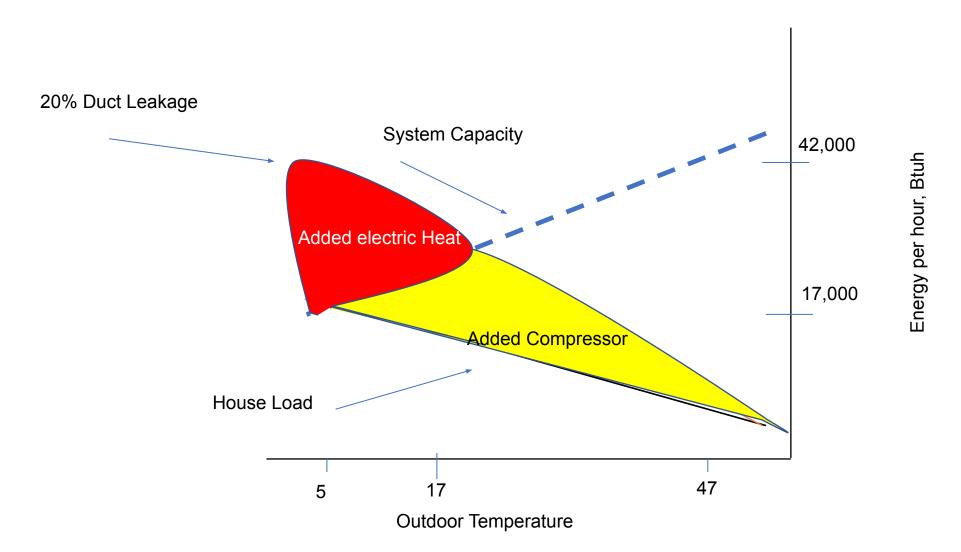
Performance Issues with Heat Pumps

Heat pumps can have problems with low airflow, leaky ducts, and incorrect refrigerant charge. There should be about 400 to 500 cubic feet per minute (cfm) airflow for each ton of the heat pump's air-conditioning capacity. Efficiency and performance deteriorate if airflow is much less than 350 cfm per ton. Technicians can increase the airflow by cleaning the evaporator coil or increasing the fan speed, but often some modification of the ductwork is needed. See **minimizing energy losses in ducts** and **insulating ducts**.

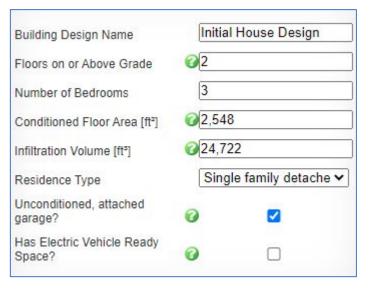
Heat Pump Performance



Outdoor Temperature


Impact of Ducts

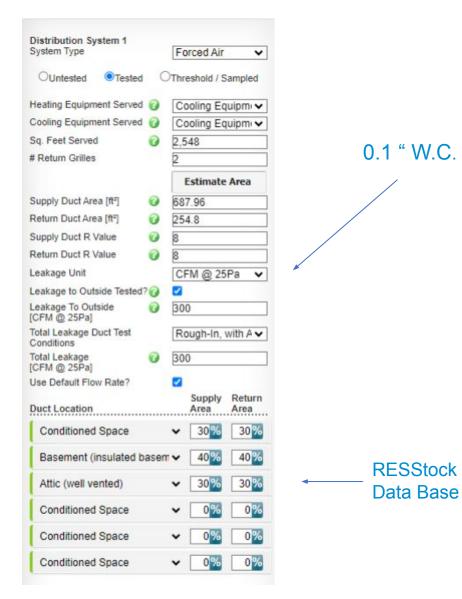
Impact of Ducts



Ekotrope – Duct Design

- 3rd party rating software designed to assist in HERS ratings as well as support other building standards. High amount of precision in determining how a house performs as well as how changes might impact energy usage.
- Software allows user to easily drag and drop new equipment in and see resultant HERS

ekotrope


RATERS & PRO

Making Energy Efficiency Easy

Ekotrope's RESNET-accredited RATER software is the most widely used HERS rating software and actively supports many other building standards. Powered by a proprietary hourly energy algorithm, our software streamlines and automates every step of the energy modeling process, from take-offs to final submission. Combining continuous product innovation with real-time collaboration among energy professionals, Ekotrope makes energy efficiency easy.

Ekotrope – Duct Design

- Over 3,000 seals across NY
- Average of 200 CFM sealed

Ekotrope – Initial Design

Mechan Name

Type

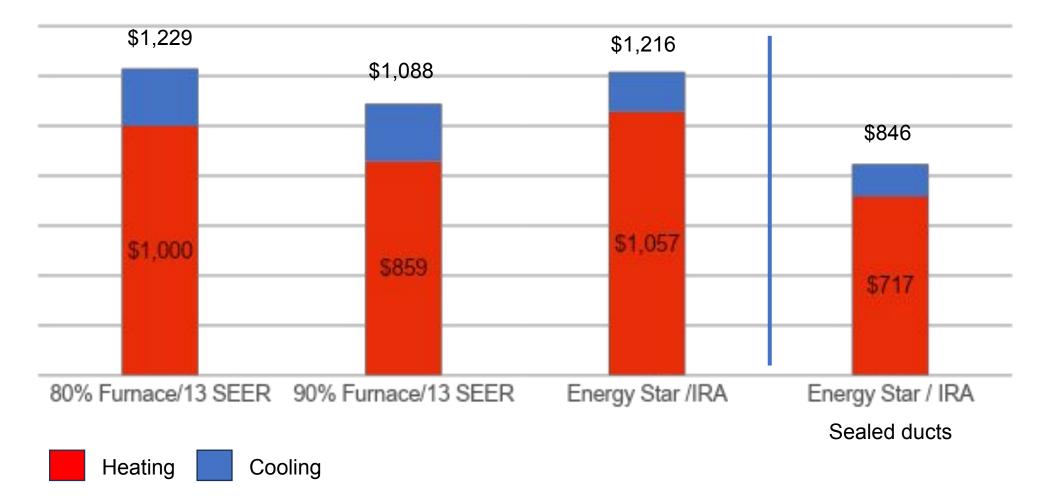
Serial N % Heating Location

Energy Bill Breakdown [\$]	
Heating Costs	\$448
Cooling Costs	\$139
Water Heating Costs	\$131
Lights and Appliances Costs	\$782
Onsite Power Production	-\$0
Service Charges	\$0
Total Energy Bill	\$1,501

Building Design Name	Initial House Design
Floors on or Above Grade	2
Number of Bedrooms	3
Conditioned Floor Area [ft²]	2,548
Infiltration Volume [ft3]	24,722
Residence Type	Single family detache V
Unconditioned, attached garage?	0 🗹
Has Electric Vehicle Ready Space?	0

Total Area [ft ²]	
Conditioned Space	2,548.0
Conditioned Volume [ft ³]	24,722.0
Shell Area	5,768.0
Above Grade Shell Area	5,768.0
Slab Floors	0.0
Foundation Walls	0.0
Framed Floors	1,200.0
Rim/Band Joists	102.0
Above Grade Walls	2,725.0
Windows	302.0
Doors	56.0
Ceilings	1,741.0
Skylights	0.0
Ducts	942.8
Ratios	
Window to Wall Ratio	0.111
Window to Floor Ratio	0.119
Average Ceiling Height	9.703
Ceiling to Floor/Slab Ratio	1.451

Window Areas by Orientat	ion
North Window Area	108.0
North # of Windows	2
Northeast Window Area	0.0
Northeast # of Windows	0
East Window Area	15.0
East # of Windows	1
Southeast Window Area	0.0
Southeast # of Windows	0
South Window Area	145.0
South # of Windows	1
Southwest Window Area	0.0
Southwest # of Windows	0
West Window Area	34.0
West # of Windows	1
Northwest Window Area	0.0
Northwest # of Windows	0
TOTAL Window Area	302.0
TOTAL # of Windows	5


+

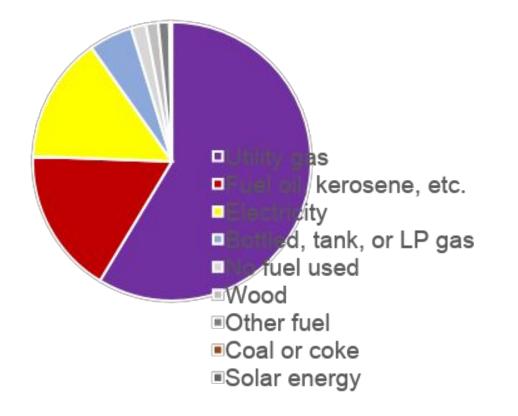
Mechanical Equipment

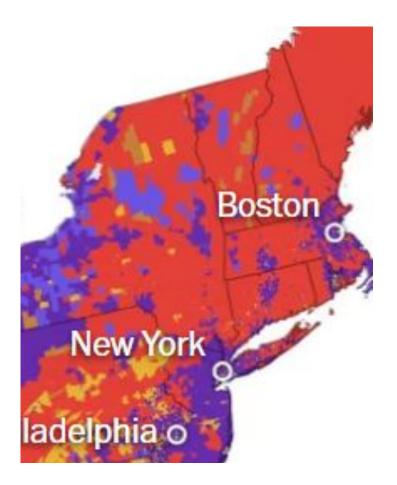
Mechanical Equipment 1		Mechanical Equipment 2	!	Mechanical Equipment	
Name	Heating Equipment	Name	Cooling Equipment	Name	Water Heater
Туре	FURNACE, AFUE:95,60	Туре	ACC,36K,13SEER -	Туре	C TANKLESS,AFUE:95,₩C
Serial Number	Edit Add Copy	Serial Number	Edit Add Copy	Serial Number	
% Heating Load Served 🔰	2 100	% Cooling Load Served	100	% Hot Water Load Served	100
Location	Unconditioned Basen 🗸	Location	☑ Unconditioned Basen ▼	Location	Unconditioned Basen 🗸
Remove	Сору	Remove	Сору	Remove	Сору

Heating Options - NY

Electric: 22.27 cents Natural Gas \$1.97 Therm 3 ton/60k furnace

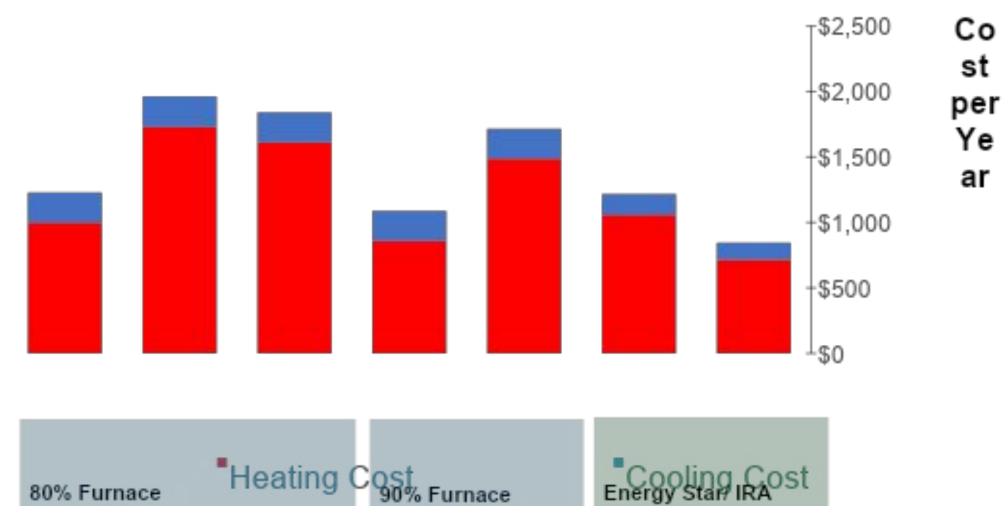
Heating Options - NYS



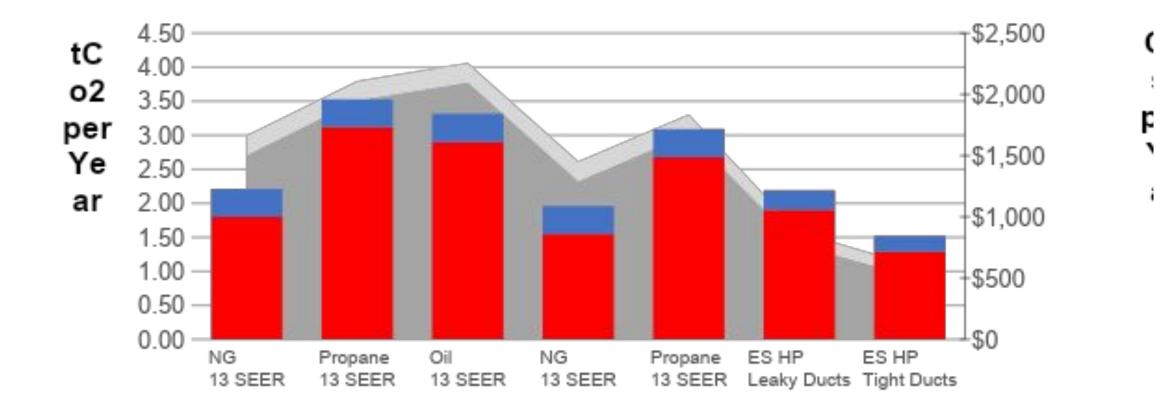


Electric: 22.27 cents Natural Gas \$1.97 Therm 3 ton/60k furnace

Northeast Heating by Fuel Type



Heating Options - NYS



Electric: 22.27 cents Natural Gas \$1.97 Therm 3 ton/60k furnace

GHG by Heating Type - NYS

"GHG Heat "GHG Cool "Heating Cost "Cooling Cost

Electric: 22.27 cents Natural Gas \$1.97 Therm 3 ton/60k furnace

Lower system flows lead to larger percentage losses*

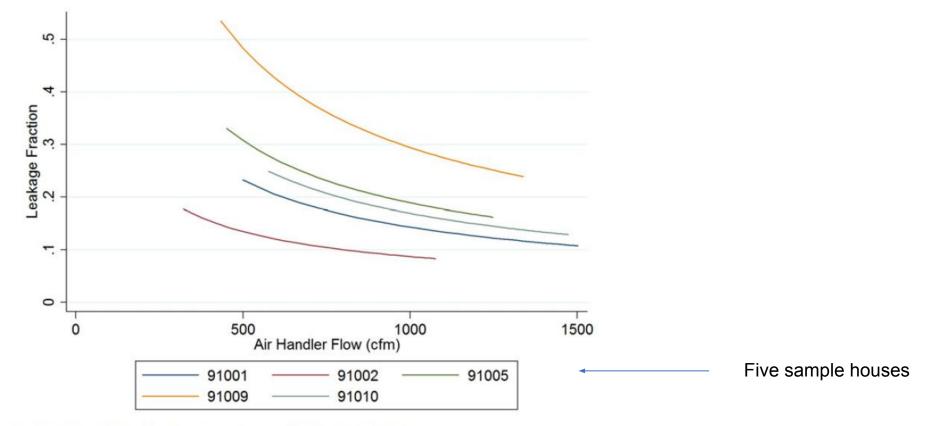


Figure 5. Leakage Fraction vs. System Airflow - All Sites

Variable Speed Ducted

Design Heat Load with & without Duct Loss

Table 4. Heat Pun	np Balance Point	Inputs and R	esult (Bend	l, OR design te	$mp = 4^{\circ} F)$
	Peak total	DHL	DHL	HP Balance	Heat Pump
Site ID	UA^\dagger	base [‡]	$w/DE^{\dagger\dagger}$	Point	Size
	(BTU/hr °F)	(BTU/hr)	(Btu/hr)	(°F)	(tons)
91001	896	63.638	97.122	41	3
91002	283	19,260	26,814	12	2
91004	1126	72,632	72,632	36	3
91005	580	40,996	69.719	26	3
91009	502	37,452	72,367	20	4
91010	632	42593	66.391	17	4

†Shell plus infiltration heat loss at heating design temperature Design Heating Load without duct losses at the design temperature ††Design Heating Load with duct losses included

Distribution Efficiency

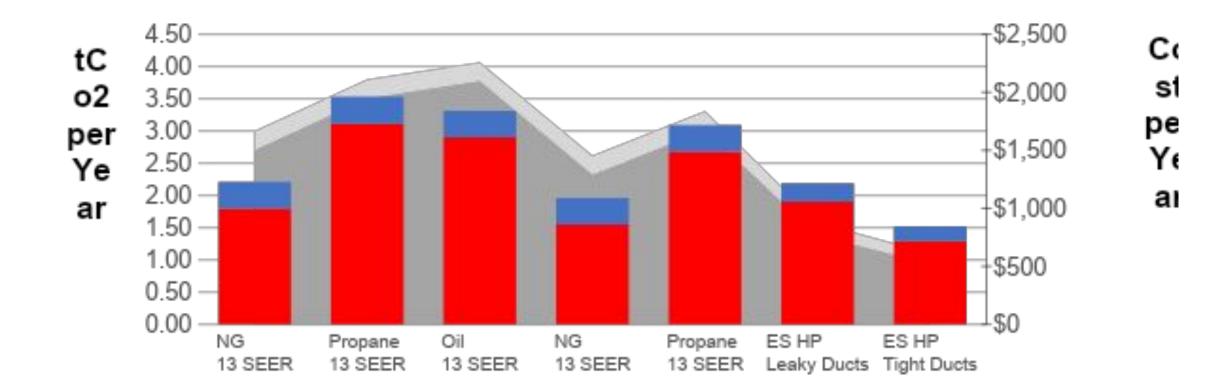
ulated Average Distribution System Efficiency

1	~ _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~pply	Supply	Return	
	Airflow	Buffer Zone	Leakage	Leakage	Distribution
Site ID	(CFM)	Temp (°F)	Fraction	Fraction	Efficiency
91001	675	56.8	0.08	0.11	0.65
91002	550	55.2	0.13	0	0.82
91004	722	n/a	0	0	1.0
91005	766	55.9	0.07	0.17	0.61
91009	748	65.3	0.18	0.19	0.49
91010	1159	57.7	0.13	0.02	0.68

Duct Characteristics

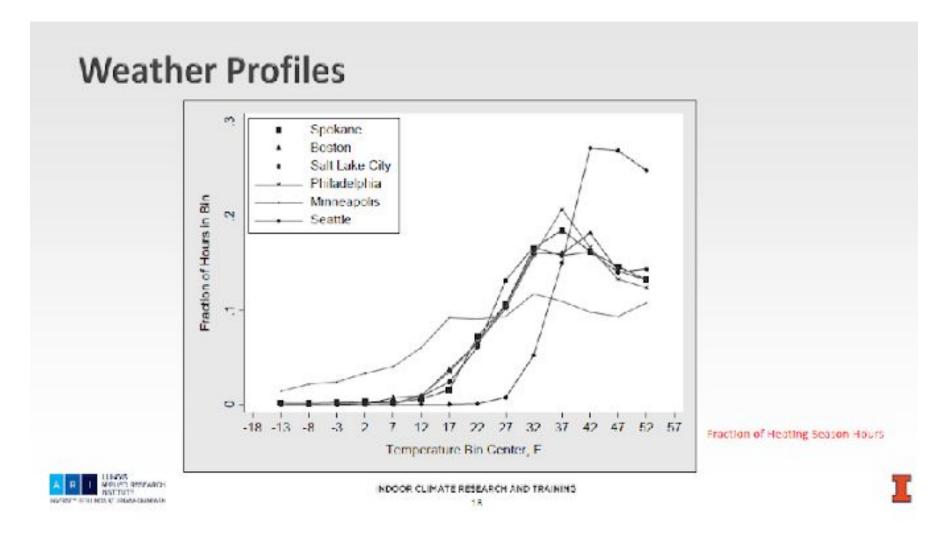
Airflow and Leakage

Site ID	Both sides duct leak to out at 50 Pa* (SCFM)	Supply duct leak to out at 50 Pa* (SCFM)	Reference [‡] Air Handler Flow (CFM, SCFM)*	Reference [‡] supply static pressure (Pa)	Reference [‡] return static pressure (Pa)
91001	231	151	943, 1061	18	-84.5
91002	276	275	688, 774	16	-21
91004	n/a	n/a	889, 1000	21.5	-48
91005	273	131	924, 1040	26	-72.5
91009	329	208	1340, 1395	50	-139
91010	148	131	1271, 1430	116	-158


* Leakage and air handler flow results corrected to standard air (68°F and 1 atmosphere). The elevation of houses in the Bend area (about 3,000 ft above sea level) means the density is about 89% of the density of standard air. The air handler flow values show both the local CFM and the standard CFM (SCFM).

* "Reference" airflow corresponds to the supply and return static pressure measurements shown in the table. Typically this airflow represents the highest flow that could be attained using the User Interface (thermostat); this measurement was taken to make sure the air handler was not working against an extreme external static pressure (above 200 Pa) at its highest flow. No adverse static pressure conditions were found. All of these systems were set up by the installer in COMFORT mode (so maximum flows typically average 325-350 CFM/nominal ton of capacity).

GHG by Heating Type - NYS



GHG Heat GHG Cool Heating Cost Cooling Cost

Electric: 22.27 cents Natural Gas \$1.97 Therm 3 ton/60k furnace

I LOVE HEAT PUMPS

Most heating time is spent in zone where heat pumps can be efficient

INCOME ELIGIBILITY AND % COSTS COVERED LOW-INCOME: <80% Area Median Income (AMI) % costs covered (Including Installation) 100% MODERATE-INCOME: 80-150% AMI 50% % costs covered (Including Installation) **OVERALL INCENTIVES** Max Consumer Rebate \$14,000 \$500 Max Contractor Rebate **REBATES FOR QUALIFIED ELECTRIFICATION PROJECTS** Heat Pump HVAC \$8.000 Heat Pump Water Heater \$1.750 **Electric Stove/Cooktop** \$840 Heat Pump Clothes Drver \$840 \$4,000 **Breaker Box Electric Wiring** \$2.500 Weatherization \$1,600 Insulation, Air Sealing, Ventilation

Solution: Require bundling heat pumps with weatherization

Homerun in south with lower heating requirements

Solves installed cost

Pays for electrical

Weatherization likely makes operating cost better than just replacing furnace

Appendix

Heat Pump vs. Furnace

- Duct leakage reduces both flow and register temperatures
- Heat Pump is colder than design intent (7f)
- The extra load created by duct losses means heat pumps can not keep up with load. You must switch to emergency/back-up electric heat.

GHG Emissions Fuel Type Comparison

Ekotrope – Initial Design

Started with a house in Salt Lake City, Utah.

Designed with a 95 AFUE, 60k furnace and a 13 SEER 3 ton AC.

Heating and Cooling costs below

Heating Costs	\$448
Cooling Costs	\$139
Water Heating Costs	\$131
Lights and Appliances Costs	\$782
Onsite Power Production	-\$0
Service Charges	\$0
Total Energy Bill	\$1,501

Building Design Name	Initial House Design	
Floors on or Above Grade	2	
Number of Bedrooms	3	
Conditioned Floor Area [ft²]	2,548	
Infiltration Volume [ft ³]	24,722	
Residence Type	Single family detache 🗸	
Unconditioned, attached garage?	0 🛛	
Has Electric Vehicle Ready Space?	0	

0

0

Heating Equipment

FURNACE, AFUE:95,66

Edit Add Copy

Unconditioned Basen

Сору

Mechanical Equipment 1

% Heating Load Served 100

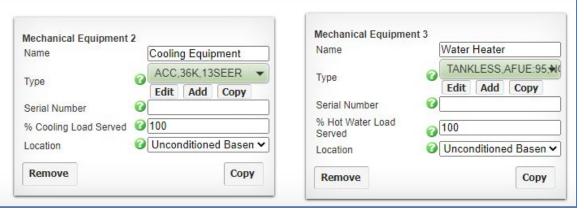
Name

Type

Serial Number

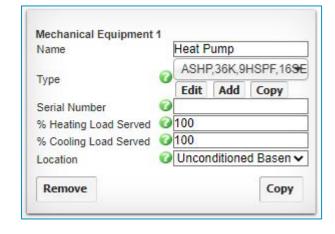
Location

Remove


Total Area [ft ²]	
Conditioned Space	2,548.0
Conditioned Volume [ft ^s]	24,722.0
Shell Area	5,768.0
Above Grade Shell Area	5,768.0
Slab Floors	0.0
Foundation Walls	0.0
Framed Floors	1,200.0
Rim/Band Joists	102.0
Above Grade Walls	2,725.0
Windows	302.0
Doors	56.0
Ceilings	1,741.0
Skylights	0.0
Ducts	942.8
Ratios	
Window to Wall Ratio	0.111
Window to Floor Ratio	0.119
Average Ceiling Height	9.703
Ceiling to Floor/Slab Ratio	1.451

Window Areas by Orientation		
North Window Area	108.0	
North # of Windows	2	
Northeast Window Area	0.0	
Northeast # of Windows	0	
East Window Area	15.0	
East # of Windows	1	
Southeast Window Area	0.0	
Southeast # of Windows	0	
South Window Area	145.0	
South # of Windows	1	
Southwest Window Area	0.0	
Southwest # of Windows	0	
West Window Area	34.0	
West # of Windows	1	
Northwest Window Area	0.0	
Northwest # of Windows	0	
TOTAL Window Area	302.0	
TOTAL # of Windows	5	

+


All a dama dama ha Aliandadian

Mechanical Equipment

Ekotrope - Delta

- Replaced Furnace and AC with a 3 ton, 9HSPF, 16 SEER Heat Pump with no other changes.
- Heating costs rose from \$448 to \$733, a 64% increase
- Cooling costs dropped from \$139 to \$119, a 14% decrease
- Total cost increase of \$275 per year

Heating Costs	\$448	
Cooling Costs	\$139	
Water Heating Costs	\$131	
Lights and Appliances	Energy Bill Breakdown [\$]	
Onsite Power Producti	Heating Costs	\$733
Service Charges	Cooling Costs	\$119
Total Energy Bill	Water Heating Costs	\$131
	Lights and Appliances Costs	\$782
	Onsite Power Production	-\$0
	Service Charges	\$0
	Total Energy Bill	\$1,766

Ekotrope - Delta

- Replaced Furnace and AC with a 3 ton, 8.5HSPF, 15 SEER Heat Pump with no other changes.
- Heating costs rose from \$448 to \$776, a 73% increase
- Cooling costs dropped from \$139 to \$126, a 9% decrease
- Total cost increase of \$314 per year

Name	Heat Pump		
	ASHP,36K,8.5HSPF,1		
Туре	Edit Add Copy		
Serial Number	0		
% Heating Load Served	100		
% Cooling Load Served	100		
Location	Unconditioned Basen		
Remove	Сору		

Energy Bill Break	down [\$]	
Heating Costs	\$448	
Cooling Costs	\$139	
Water Heating Costs	\$131	
Lights and Appliance	Energy Bill Breakdown [\$]	
Onsite Power Produc	Heating Costs	\$776
Service Charges	Cooling Costs	\$126
Total Energy Bill	Water Heating Costs	\$131
Total Energy Dill	Lights and Appliances Costs	\$782
	Onsite Power Production	-\$0
	Service Charges	\$0
	Total Energy Bill	\$1,815