Kohta Ueno

Unvented Roof Research:

Research and Reality

March 10, 2016

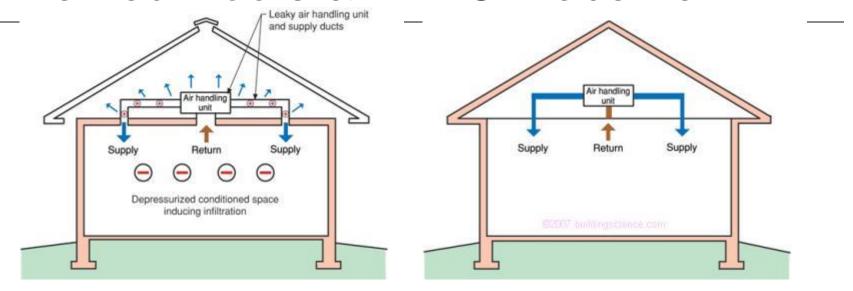
Unvented Roofs: Background

Ventilated Attics—Best Choice

 Roof sheathing dries to ventilated attic-moisture safe

Interior moisture (air leaks)
 ventilated away in winter

 Air sealing at ceiling critical for best performance (e.g., spray foam air barrier, detail with sealant)



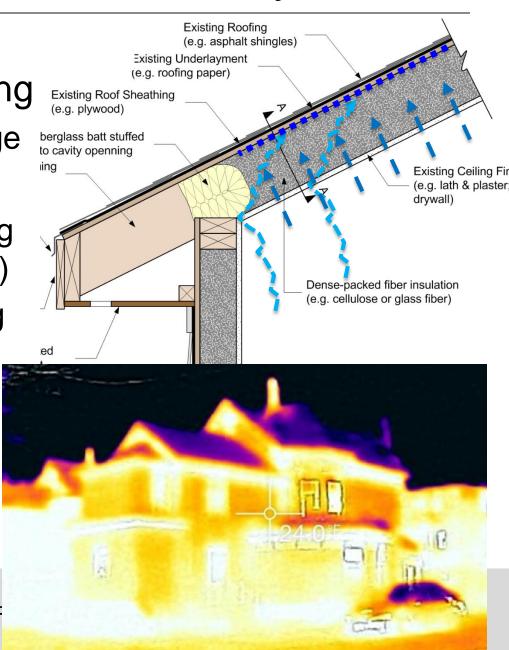
Then Why Unvented Roofs?

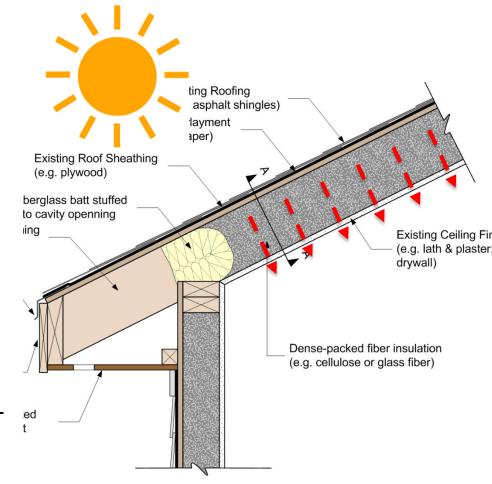
- Living space built into roof
- Vented cathedral assemblies often poor performance
- Complicated rooflines, hip geometries—how to vent?
- Unworkable air barrier at ceiling line
- Blown-in rain (coastal)
- Hurricane tear-off
- HVAC in vented attic

Unvented Roofs & HVAC Placement

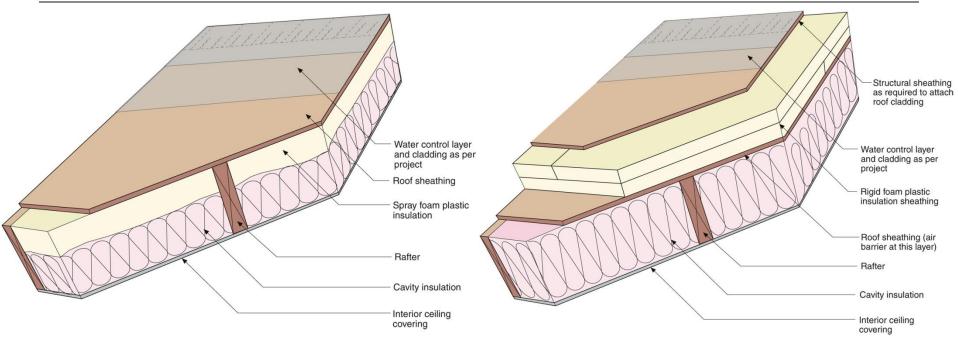
- Ducts in unconditioned attic = huge energy losses
 - Industry reluctant to move ducts out of attic
 - Ice dam issues due to duct losses
- Solution: bring ducts into conditioned space
- Unvented/conditioned attic—keeps ductwork in conditioned space, duct leak issues eliminated

Fibrous Insulation Unvented Roofs


- Dense pack insulation of unvented roofs common in cold-climate retrofits
 - Moisture risks (see BSI-043 "Don't Be Dense— Cellulose and Dense-Pack Insulation")—2 in 10 failure?
 - Violates I-codes (see IRC § R806.4)
 - "Ridge rot"—localized problems (SIPS same problem)


Why Unvented + Loose Fill Risky?

- Different than walls?
- Moisture risks at sheathing
 - Interior-sourced air leakage
 - Vapor contributing too?
 - Zero-perm exterior ("wrong side perfect vapor barrier")
 - Night sky radiation cooling
 - Stack effect in winter
 - "Ridge rot" (thermal and moisture buoyancy)



Why Unvented + Loose Fill Risky?

- Risk reduced by:
 - Airtightness of ceiling
 - Dense insulations-less airflow
 - Solar drive
 - But white roofs, shading
 - Lower interior RH (winter)
 - Why many of them work?
 - Lower permeance interior
 - Assumes good airtightness vapor retarder not bypassed
- Moisture accumulation: what gets in vs. gets out

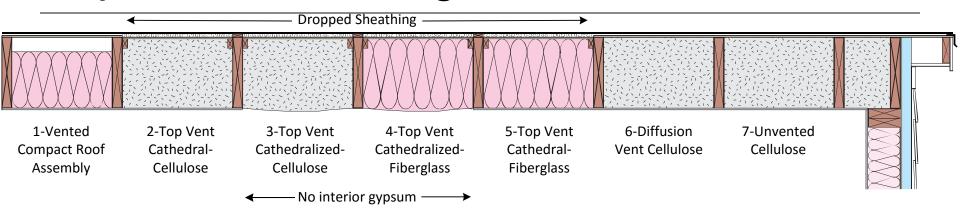
Spray Foam/Exterior Insulation Roofs

- 2006 IRC: R806.4 Unvented attic assemblies
- Minimum R-value of "air impermeable insulation"
 - Not ratio of R-values... don't get me started...
- Nail base needed with rigid foam on roof deck

Why Fibrous Fill Unvented Roofs?

- Unvented roofs <u>without</u> spray/board foams could reduce costs and increase market penetration...
 IF moisture damage risks are addressed
- Retrofit opportunities (existing uninsulated living space at roof line, without removing finishes)

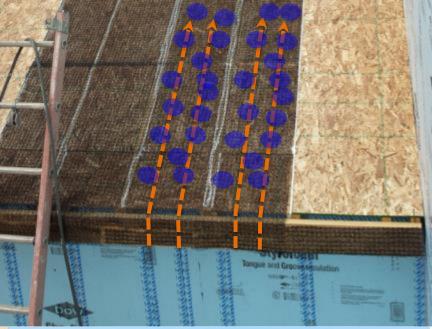
Chicago Experiment


Experimental Design

- Seven roof bays (east-west pairs) in test garage attic in Chicago, IL (5A) area
- 72 F/50% RH interior conditions through winter: stressing assemblies to failure

Experimental Design




#	Name	Venting	Insulation	Interior
1	Vented	Vent space (2")	Fiberglass	Gypsum Bd
2	Top Vent Cathedral-Cellulose	Cedar Breather (~1/2")	Cellulose	Gypsum Bd
3	Top Vent Cathedralized-Cellulose	Cedar Breather (~½")	Cellulose	Open
4	Top Vent Cathedralized-FG	Cedar Breather (~½")	Fiberglass	Open
5	Top Vent Cathedral-FG	Cedar Breather (~1/2")	Fiberglass	Gypsum Bd
6	Diffusion Vent Cellulose	Diffusion Vent	Cellulose	Gypsum Bd
7	Unvented Cellulose	None	Cellulose	Gypsum Bd

All assemblies vapor open inside

Latex paint on GWB or no GWB)

Top Vent Details

Monitoring Result Takeaways

- Vented roof=great performance—even @50% RH!
- Unvented cellulose assembly driven to failure (high RHs, high sheathing MCs, condensation)
- Cellulose + diffusion vent <u>helps</u>, but not enough
- Top venting not enough to save roofs in:
 - Zone 5A climate, 50% RH interior
 - With a small (~1/2" vent space)
 - With OSB sheathing
- In top vent roofs, fiberglass roof much worse than cellulose

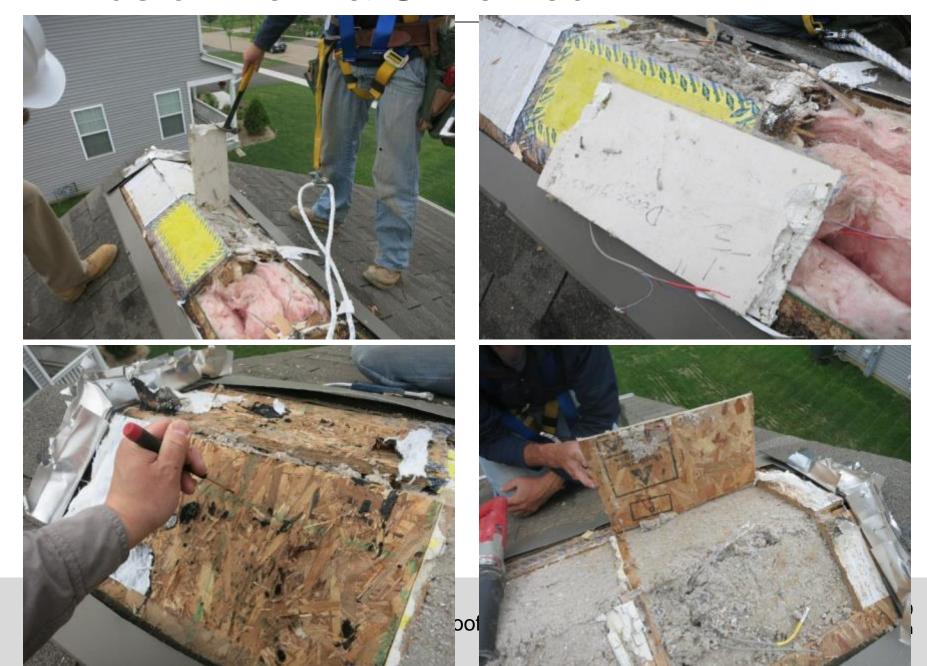

Sheathing Ridge Condition

16

© buildingscience.com

Sheathing Ridge Condition

Top Vent Fiberglass Ridge Conditions



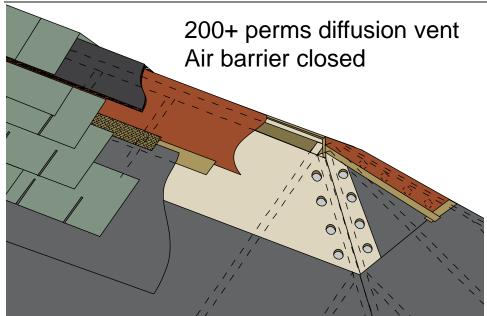
Diffusion Vent & Unvented

Sheathing Further from Ridge-East

Chicago Experiment Conclusions

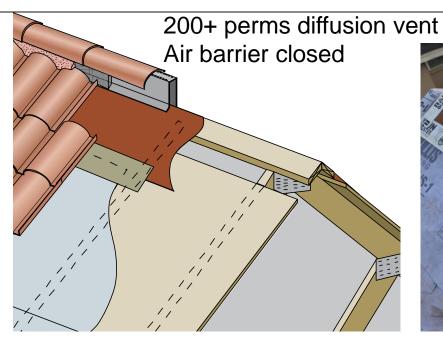
- No roof except for "control" vented roof showed "safe" performance in Zone 5A @ 50% RH
- Cellulose roofs generally showed lower MCs than fiberglass roofs, less damage to structure
- "Top vent" configuration not effective
 - OSB too restrictive for diffusion drying, even with outward thermal gradient? (part of the time)
 - Ventilation space too small?
- Diffusion vent: "helpful, but not enough"
 - Allowed greater drying than conventional unvented
 - But still higher MCs than generally considered safe

Houston Research (Diffusion Vent Ridge)


1990's Cathedralized Roofs-Houston

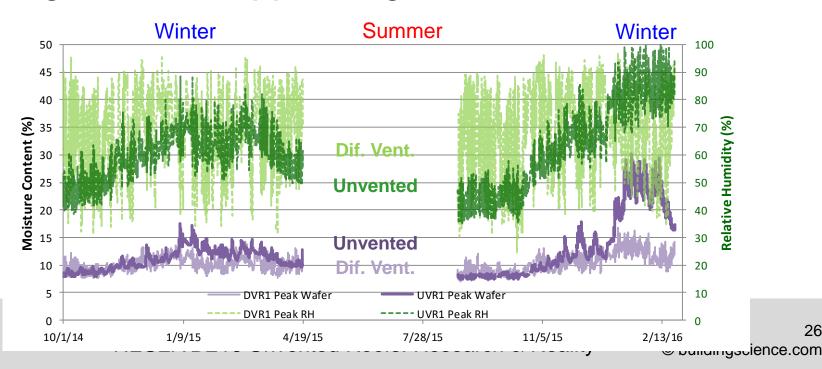
- Even in Houston (CZ 2A), had moisture at ridge
- Concentrated only at ridge—rest of roof OK
- Similar problems in Jacksonville FL (CZ 2A)
- No interior air/vapor control (not practical)
- How about letting the moisture out at ridge?

Diffusion Vent Prototype (Houston)



ty

Diffusion Vent Prototype (Orlando-Tile)



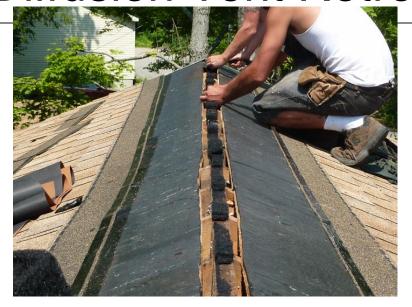
Houston/Orlando Results

- Diffusion vent avoids wintertime ridge accumulation problems (ridge peak RHs/MCs)
- No failures at low interior RH, bigger difference at higher RH (interior humidification)
- Airtightness disappointing in some cases-no SPF

26

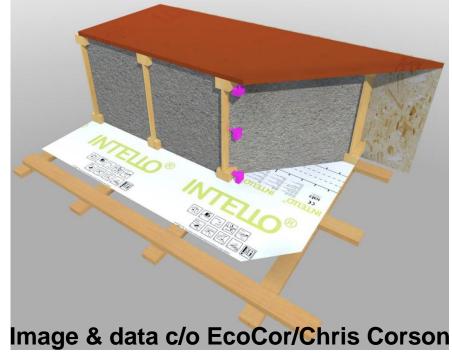
Cut & Cobble Unvented Roof (Diffusion Vent)

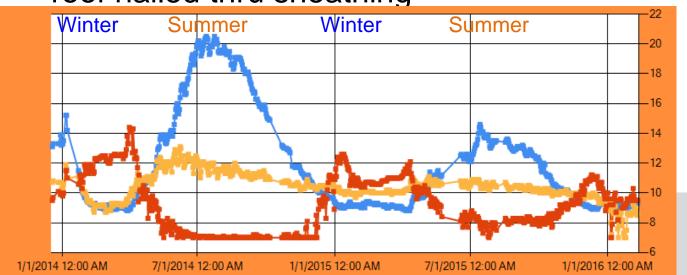
Cut & Cobble Roof, Central MA



Diffusion Vent Retrofit

29


Monitoring Results

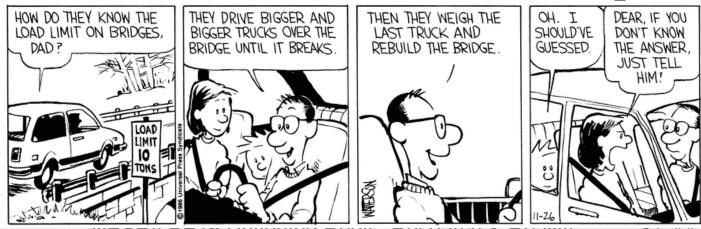

- Not ideal experiment (with & w/o DV comparison)
 - (Trying to fix friends' houses, not rot them)
- Still worrying high wood MCs ~30% peaks
- Peaks occur in spring (May), not winter—???
- What goes in vs. what comes out
 - In via air leakage/out via vapor diffusion—hard
 - Airtightness was ~6 ACH 50; air leaks to roof evident
 - Trapped moisture—foil-faced polyiso below?
 - Small diffusion vent surface area
- Return trip in spring 2016

Working Unvented Cellulose Assemblies

Variable-Perm Membrane Unvented Roof

- Roof assembly:
 - Gypsum board, strapping
 - Intello plus membrane
 - 14" dense packed I joist
 - 3/4 AdvanTech (OSB)
 - Grace Ice and Water HT
 - Standing seam galvalume roof nailed thru sheathing

TJI MCs:


- ♦ Inboard
- Middle
- Outboard

DIBt/475 Guidance on "Hot Roofs"

- Vapor variable permeance membrane on interior side of roof assembly
- Testing of airtightness
- Low MCs when closed (construction moisture)
- No permanent shading (e.g., solar panels)
- No sustained high interior RH
- Dark roof membrane (α>0.80)
- I trust PassivHaus and other 1 ACH 50 builders with this idea, but...

Further Research

- Ideal experiment: build hundreds, and see if/how many fail! ¬_(ツ)_/¬ [sarcasm]
- Further Building America research in CZ 5A
 - Includes variable-permeability interior vapor retarders, with and without ridge diffusion vent
 - First winter low interior RH
 - Second winter high interior RH
 - Third winter add controlled interior air leakage

Questions?

Kohta Ueno kohta [at] buildingscience [dot] com

Document Resources

- Building Science Digest 149: Unvented Roof Assemblies for All Climates
 http://buildingscience.com/documents/digests/bsd-149-unvented-roof-assemblies-for-all-climates
- Building Science Insight 043: Don't Be Dense—Cellulose and Dense-Pack Insulation http://buildingscience.com/documents/insights/bsi-043-dont-be-dense
- Building Science Insight 088: Venting Vapor http://buildingscience.com/documents/insights/bsi-088-venting-vapor
- Building America Report 1511: Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting http://buildingscience.com/documents/building-america-reports/ba-1511-field-testing-unvented-roof-fibrous-insulation-tiles-and
- Building America Report 1409: Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates http://buildingscience.com/documents/building-america-reports/ba-1409-field-testing-unvented-roofs-asphalt-shingles-cold-and
- Building America Report 1001: Moisture-Safe Unvented Wood Roof Systems
 http://buildingscience.com/documents/bareports/ba-1001-moisture-safe-unvented-wood-roof-systems/view
- Building America Report 1308: Moisture Control for Dense-Packed Roof Assemblies in Cold Climates: Final Measure Guideline http://buildingscience.com/documents/bareports/ba-1308-moisture-control-dense-packed-roof-assemblies-cold-climates/view
- INTELLO & DB+ Approved by DIBt for Use in Unvented Hot Roof Assemblies
 https://foursevenfive.com/intello-db-approved-by-dibt-for-use-in-unvented-hot-roof-assemblies/

Instrumentation, Insulation, Finishes...

Top Vent Cellulose Ridge Conditions

Disassembly Takeaways

- Results consistent with monitoring data
- Sheathing stained but not punky/structural damage
- Damage concentrated/severe at ridge
- Fiberglass sheathing & framing: extensive damage
 & staining, possible mold growth
- Cellulose sheathing: some delamination, adhesions, and rusty fasteners—not as bad
- Cellulose did not settle over one winter
- Fiberglass batts leave lots of air leakage paths